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zu durchleben. Danke, dass du meine Tage durch dein sonniges Gemüt erhellt hast.
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Abstract

Connecting smart devices to the Internet of Things (IoT) enables a wide range of innovative ap-
plications, such as industrial monitoring and automation, smart home applications, or smart city
deployments. For many IoT applications, smart devices are required to be compact and mobile,
which means they need to operate on small batteries and wirelessly exchange data with other
devices on the Internet. One of the most popular wireless technologies for such applications is
Bluetooth Low Energy (BLE), which provides energy-efficient radio communication and is al-
ready widely available in consumer devices.

As BLE technology is further optimized, BLE devices are increasingly used in time- and safety-
critical IoT applications, such as industrial control systems or safety-critical healthcare applica-
tions. In these applications, BLE devices need to communicate with other IoT devices within
given end-to-end reliability and latency bounds while operating on a single battery charge for an
extended time period. Unfortunately, devices employed in real-world settings are likely to expe-
rience unpredictable packet loss and delay caused by external interference from co-located radio
devices, narrow-band fading effects, or effects on the path across the Internet. How BLE de-
vices can meet given end-to-end reliability requirements, such as a maximum delay or a minimum
reliability, remains an open question in real-world applications.

In this thesis, we focus on enabling constrained BLE devices to reliably exchange time-critical
data with peer devices. We investigate in detail how BLE-based IoT devices are affected by real-
world communication issues occurring in the local BLE environment or on the Internet and show
how BLE devices can cope with these problems by dynamically adapting their communication
parameters to network changes. Towards this goal, we make the following three contributions:

First, we present three novel BLE adaptation mechanisms that significantly improve the per-
formance of connection-based BLE communication. Our BLE channel management passively
monitors the quality of used BLE data channels and dynamically adapts the list of used data chan-
nels to improve communication reliability. Our BLE PHY mode adaptation dynamically chooses
the most suitable BLE PHY mode to sustain a given communication reliability while limiting
unnecessary power consumption. Our BLE connection parameter adaptation monitors the trans-
mission delay of BLE data packets and adapts the BLE connection parameters at runtime to allow
time-critical data exchange over BLE connections. All three mechanisms are fully compliant to
the BLE specification and can be used on off-the-shelf BLE devices.

Second, we present BLEach, the first full-fledged, open-source IPv6-over-BLE communica-
tion stack for constrained and low-power devices. We show that low-power BLE devices can use
BLEach to directly exchange IPv6 packets with other IPv6 devices on the Internet. Furthermore,
we go beyond the IPv6-over-BLE specification and extend BLEach to support multiple IPv6 traf-
fic flows with different QoS classes over a single IPv6-over-BLE connection. This allows BLE
devices to dynamically prioritize certain safety-critical IPv6 packets over other IPv6 traffic.

Third, we show how low-power BLE devices are able to efficiently monitor the communication
latency and reliability across the whole network path, i.e., from a BLE node to a cloud server.
Using our network estimation and novel BLE end-to-end models, devices are successfully able to
meet a given end-to-end reliability and latency bound when communicating with a cloud server
on the Internet, while limiting their power consumption.
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Kurzfassung

Die Anbindung intelligenter Geräte an das Internet der Dinge (IoT) ermöglicht eine breite Palette
innovativer Anwendungen, wie z. B. industrielle Überwachungs- und Automatisierungsapplika-
tionen, Smart-Home-Anwendungen oder Smart-City-Lösungen. In vielen dieser Anwendungen
müssen die Geräte kompakt und mobil sein, was bedeutet, dass sie mit kleinen Batterien betrie-
ben werden müssen und Daten nur mittels Funkübertragung mit anderen Geräten austauschen
können. Eine der beliebtesten Funktechnologien für solche Anwendungen ist Bluetooth Low Ener-
gy (BLE), welche eine überaus energieeffiziente Funkkommunikation ermöglicht und in Smart-
phones und Laptops bereits weit verbreitet ist.

Durch die ständige Verbesserung von BLE finden BLE-Geräte zunehmend Einsatz in zeit-
und sicherheitskritischen IoT-Anwendungen, wie z.B. in industriellen Steuerungssystemen oder
in sicherheitskritischen Anwendungen im Gesundheitswesen. In solchen Anwendungen müssen
BLE-Geräte innerhalb definierter maximaler Ende-zu-Ende-Latenzzeiten und mit definierter mi-
nimaler Ende-zu-Ende-Zuverlässigkeit Daten austauschen und gleichzeitig mit einer einzigen Bat-
terieladung über längere Zeiträume auskommen. Leider kommt es bei Geräten, welche in rea-
len Umgebungen eingesetzt werden, immer wieder zu unvorhersehbaren Paketverlusten und -
verzögerungen. Der Grund für diese Verluste und Verzögerungen sind meist Störungen durch
benachbarte Funkgeräte, physikalische Fading-Effekte oder Probleme im Internetpfad. Aktuell
ist unklar, wie BLE-Geräte in realen Anwendungen bestimmte Anforderungen, wie z. B. ei-
ne definierte maximale Ende-zu-Ende-Latenzzeit oder eine definierte minimale Ende-zu-Ende-
Zuverlässigkeit, erfüllen können.

Diese Dissertation behandelt die Frage, wie batteriebetriebene BLE-Geräte zeitkritische Da-
ten zuverlässig übertragen können. Wir untersuchen im Detail, wie BLE-basierte IoT-Geräte
von realen Kommunikationsproblemen betroffen sind, wenn in der lokalen BLE-Umgebung oder
im Internet Störungen auftreten. Weiters zeigen wir, wie BLE-Geräte diese Kommunikations-
probleme bewältigen können, indem sie ihre Kommunikationsparameter dynamisch an Netz-
werkänderungen anpassen. Um dieses Ziel zu erreichen, leistet diese Dissertation die folgenden
drei Beiträge:

Wir entwickeln drei neuartige BLE-Anpassungsmechanismen, welche die Leistung von BLE-
Verbindungen deutlich verbessern. Unser BLE-Kanalmanagement überwacht passiv die Qua-
lität der verwendeten BLE-Frequenzen und wählt dynamisch die besten Frequenzen zur Da-
tenübertragung aus, um die Zuverlässigkeit der Kommunikation deutlich zu verbessern. Unsere
Anpassung des BLE-PHY-Modus wählt automatisch den geeignetsten BLE-PHY-Modus aus, der
eine gegebene Kommunikationszuverlässigkeit unterstützt und gleichzeitig den Stromverbrauch
minimiert. Unsere Anpassung der BLE-Verbindungsparameter überwacht die Latenzzeit von
BLE-Datenpaketen und passt die BLE-Verbindungsparameter dynamisch an, um zeitkritischen
Datenaustausch über BLE-Verbindungen zu ermöglichen. Alle drei Mechanismen sind vollständig
konform mit der BLE-Spezifikation und können daher ohne Probleme auf handelsüblichen BLE-
Geräten verwendet werden.

Wir präsentieren BLEach, den ersten kompletten, quelloffenen IPv6-over-BLE-
Kommunikationsstack für batteriebetriebene Geräte. Wir zeigen weiters, dass batteriebetriebene
BLE-Geräte BLEach einfach nutzen können, um IPv6-Pakete direkt mit anderen IPv6-Geräten
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im Internet auszutauschen. Zudem erweitern wir BLEach über die IPv6-over-BLE-Spezifikation
hinaus, um mehrere IPv6-Verkehrsströme mit unterschiedlichen QoS-Klassen über eine einzige
IPv6-over-BLE-Verbindung zu unterstützen. Dadurch ist es BLE-Geräten möglich bestimmte
sicherheitskritische IPv6-Pakete dynamisch gegenüber anderem IPv6-Verkehr zu priorisieren.

Wir zeigen, wie batteriebetriebene BLE-Geräte in der Lage sind, die Kommunikationslatenz
und -zuverlässigkeit über den gesamten Netzwerkpfad, also von BLE-Gerät bis Cloud-Server,
effizient zu überwachen. Mit dieser Technik und unseren neuartigen BLE-Modellen sind Geräte
erstmals erfolgreich in der Lage, bei der Kommunikation mit einem Cloud-Server im Internet eine
bestimmte Ende-zu-Ende-Zuverlässigkeits- und Latenzgrenze einzuhalten und gleichzeitig ihren
Stromverbrauch zu minimieren.
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1
Introduction

Over the last decade, the Internet of Things (IoT) has been one of the key enabling technologies for
creating a wide range of smart and innovative applications, where vast numbers of smart “things”
connect the physical world to the Internet [222]. For example, using IoT technology for indus-
trial monitoring and automation, manufacturers are able to improve plant productivity, decrease
manufacturing costs, and minimize production waste. IoT devices in smart healthcare and assisted
living applications enable preventive medicine, real-time detection of emergencies, and more ac-
curate patient care. Smart home, smart city, and smart grid applications create sustainable living
environments by optimizing resource allocation while improving their inhabitants’ quality of life.
With these social benefits and an estimated net profit of up to $14.4 trillion between 2013 and
2022 created by IoT applications [218], it is not surprising that the number of devices connected
to the IoT is steadily increasing and is expected to hit 75 billion by 2025 [212].

Many IoT applications, such as smart health and fitness trackers [59], smart home prod-
ucts [160], or smart agriculture applications [198], require that IoT devices are cost-efficient,
compact, and mobile. This means that so-called IoT nodes have constrained memory and pro-
cessing resources, need to operate on small batteries, and require wireless communication capa-
bilities [222]. One of the most popular technologies to connect low-power nodes wirelessly to
the Internet is Bluetooth Low Energy (BLE), which fits all the requirements above. BLE devices
have a small form factor and are widely and cheaply available. BLE devices are also very energy
efficient, outperforming Wi-Fi and other low-power wireless technologies such as IEEE 802.15.4
or ANT [55, 72, 190], and may operate on single coin cell batteries for multiple years. In contrast
to cellular technologies, BLE communication uses the popular 2.4 GHz ISM (industrial, scientific
and medical) frequency band, which allows BLE devices to operate globally without requiring
any license fees [24]. Moreover, BLE is already widely available in most consumer electronic
devices, such as wearables, smartphones, tablets, and laptops, which means that BLE-based nodes
can directly interact with users via their existing devices and can use these devices to connect to
the Internet [192].

These advantages make BLE the technology of choice for a wide range of different IoT appli-
cations, where IoT nodes need to reliably exchange messages with other devices while operating
on small batteries for a prolonged period. Smart grid and smart city applications use BLE devices
to improve the energy efficiency of communities [49], track appliances [100], or monitor water
quality [83]. Smart healthcare solutions use BLE to monitor vital signs of patients [84, 93] or
to locate doctors, nurses, and medical equipment [112]. Smart home and office applications use
BLE technology for access control [160,175], smart lighting solutions [199], or building condition
monitoring [13, 191]. Moreover, Project Connected Home over IP (CHIP), a consortium of well-
known companies like Google, Amazon, Apple, and IKEA, specifies BLE as one of the standard
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wireless technologies for future smart home solutions [235].

As the number of existing BLE devices is steadily increasing and has already reached over 8 bil-
lion in 2020 [211], the BLE specification is continuously improved and extended to allow an even
wider range of applications using BLE communication, like high-fidelity audio streaming [192].

1.1 Time- & Safety-critical IoT Applications based on BLE

As research on BLE technology advances and BLE’s performance is increasingly optimized, more
and more BLE-based IoT nodes operate in application domains where they are required to reliably
exchange data packets with peer devices within given latency bounds while operating on a limited
power supply. Some of these time- and safety-critical IoT applications encompass, but are not
limited to, the following application domains:

Professional sports tracking. BLE devices can be embedded into professional sports equipment
to allow accurate training progress tracking, data-based referee decisions, or injury detection in
real-time. In football or hockey games, for example, BLE devices embedded in the ball or puck and
worn by individual players allow to track their individual location in real-time during a game [71].
BLE-enabled equipment allows to track fine-grained statistics during training or competition and
almost real-time data annotation in the cloud [186, 208]. Coaches have instant access to their
teams’ statistics to continuously track performance or quickly shift strategy and athletes may even
use instant feedback to improve performance during competition. Besides real-time data tracking,
BLE-enabled equipment is also used to prevent or immediately detect sports injuries, such as
concussions in American Football [194].

Industrial monitoring and control systems. Industrial monitoring applications use BLE tech-
nology in use cases where devices need to reliably transfer time-critical data to a central server.
For example, BLE nodes continuously monitor critical processes, e.g., to immediately detect leaks
of hazardous fluids, or to perform predictive maintenance of important equipment, e.g., to power
it down before it breaks [97]. BLE-based structural monitoring devices, such as fire detection
systems, operate for years on small batteries while still reliably transmitting critical alarm mes-
sages to a server within seconds to improve building safety [37]. Furthermore, BLE is used to
coordinate human-machine interaction in industrial settings, such as autonomous vehicles sharing
the warehouse floor with workers [119].

Safety-critical healthcare. Healthcare applications use BLE-enabled tracking devices to con-
tinuously monitor patients to identify emergencies and alarm medical personnel. Assisted living
facilities employ BLE-enabled wearables to measure daily activity and detect falls of elderly or
disabled people [3, 171]. Whenever a fall or another emergency event occurs, the BLE device
immediately issues an alarm message to call for help. BLE-based sensors are used in even more
safety-critical medical environments, such as hospital beds or intensive care units (ICU)s, to con-
tinuously monitor patients’ vital signs [93]. In case critical metrics, such as blood oxygen, blood
pressure, or electrocardiogram (ECG) readings, indicate a medical emergency, the monitoring
BLE device notifies the medical staff to prevent life-threatening situations.

On the one hand, it is important for all the above applications that BLE nodes are able to ex-
change data packets with a server within hard end-to-end delay and reliability bounds. For exam-
ple, industrial monitoring systems require an end-to-end communication reliability above 99.9%
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and end-to-end communication latencies below 50 ms [132]. Similarly, smart healthcare appli-
cations demand an end-to-end reliability above 99% and end-to-end latency bounds of multiple
seconds [93]. More safety-critical healthcare applications, such as monitoring patients in ICUs,
require an end-to-end reliability of 99.9% and a maximum end-to-end latency of 100 ms [5]. If
data packets between node and server are unpredictably lost or exceed the specified maximum
delay, costly equipment may be damaged, undetected injuries may cause long-term health prob-
lems, or even lives may be lost. On the other hand, it is also important that the battery-powered,
wireless nodes used in these applications are able to successfully operate for a given period before
being recharged or replaced. If a critical event occurs, but the node has run out of battery, similar
harms as above may occur. As the wireless communication of a node accounts for a significant
portion of its energy consumption, BLE devices cannot simply use the fastest, and therefore most
energy-consuming, BLE communication parameters [55]. Instead, battery-powered BLE devices
in time-critical application domains need to find suitable BLE parameters that allow to sustain
time-critical data exchange while limiting the devices’ power consumption.

1.2 Problem Statement

In this thesis, we focus on enabling resource- and energy-constrained BLE devices to reliably ex-
change time-critical data with peer devices in the local BLE network and on the Internet. Towards
this goal, we investigate how BLE-based IoT devices are affected by and can cope with real-world
communication issues occurring in the local BLE environment or over the Internet.

BLE communication in real-world environments. Low-power wireless technologies such as
BLE may experience packet loss and delays when deployed in real-world settings [15]. First, BLE
transmissions may be interfered by co-located wireless devices that also use the popular 2.4 GHz
ISM frequency band, such as Wi-Fi, IEEE 802.15.4, or Classic Bluetooth [30, 31]. Such exter-
nal radio interference causes BLE transmission to be lost and, therefore, significantly impacts
key performance metrics of BLE communication, such as energy efficiency, data throughput, and
transmission latency. Second, BLE communication may also be affected by multipath fading,
where narrow-band radio signals are reflected by nearby obstacles (e.g., walls or persons) causing
destructive self-interference, i.e., a receiver does not detect or cannot decode any signal from the
transmitter [226]. Similar to external interference, multipath fading also causes packet loss, which
decreases the performance of BLE communication. Third, BLE uses a relatively low transmission
power, the default transmission power of BLE devices is 1 mW, to decrease the energy consump-
tion of transmitting devices and to comply with ISM band regulations [24]. Although this leads to
very energy-efficient communication, it may cause problems when BLE devices need to commu-
nicate over long distances, as packets with a low received signal strength cannot be successfully
decoded at the receiver [15].

To cope with these problems, the BLE specification foresees multiple mechanisms that BLE
devices may use at runtime to tune the performance of an active BLE connection, namely:

BLE channel management. BLE connections make use of Adaptive Frequency Hopping (AFH)
to limit the negative effects of individual BLE data channels that have poor quality. To exclude
poor-performing channels from being used for data exchange and hence mitigate the problems due
to poor data channels even further, the BLE specification allows BLE devices to adaptively change
the list of channels used for frequency hopping at runtime.
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BLE PHY mode adaptation. BLE devices can choose one out of four possible physical layer (PHY)
modes to exchange data with a peer device. By adapting the used PHY mode of a BLE connection
at runtime, BLE devices can trade a longer communication range and high robustness (due to
symbol coding and forward error correction) for a higher data rate (caused by a higher physical
symbol modulation).

BLE connection parameter adaptation. The timing of data exchange over BLE connections is de-
fined by multiple BLE connection parameters. BLE devices can choose and dynamically change
these connection parameters due to changes in the BLE network or updated application require-
ments. For example, BLE devices may use fast connection parameters when a low transmission
latency is required or may use energy-efficient connection parameters to conserve energy.

Techniques related to these three BLE mechanisms have been shown to significantly improve
communication performance of other wireless technologies. For example, adaptive frequency hop-
ping techniques have been shown to effectively mitigate the effects of external radio interference
and multipath fading in other low-power wireless technologies [225, 226]. Dynamically changing
the used PHY mode to changing environmental conditions is an effective technique to sustain given
application requirements, as shown for LTE [123], Wi-Fi [125], LoRa [197], and UWB [88]. Fur-
thermore, adapting communication timing has already been successfully used by other low-power
radio devices to sustain specific application needs [102,236]. Unfortunately, the BLE specification
does neither define nor indicate how these mechanisms should be used to improve the performance
of BLE communication. Manufacturers of BLE devices may implement their own proprietary so-
lutions of these mechanisms or may choose not to use these mechanisms at all. To make things
even more complicated, the low-level communication behavior of a BLE device is usually imple-
mented by a dedicated BLE radio peripheral, which autonomously handles communication timing
and buffer management. These BLE radios act as “black boxes” to the BLE application, as they
hide all low-level communication details (e.g., number of retransmissions, BLE signal strength,
etc.). Developers have no explicit information or control over ongoing BLE packet transmissions
and can only interact with the BLE radio via high-level commands. Therefore, very little is known
about how BLE devices in real-world deployments running a single IoT application can use these
three mechanisms at runtime to meet given application requirements, such as latency, reliabil-
ity, and power consumption. To design and implement such effective and efficient mechanisms
that cooperatively improve the performance of BLE, a detailed understanding of the behavior of
BLE communication under different environmental conditions is necessary. This leads to our first
research question (RQ):

RQ 1: How can the BLE adaptation mechanisms be effectively used in real-world BLE applica-
tions to sustain given latency and reliability bounds while minimizing power consumption?

BLE devices on the Internet. Typical IoT nodes need to communicate with cloud services, e.g.,
to send and store measurement data, check for firmware and configuration updates, or deliver
critical alarm messages. BLE-based IoT applications usually use a gateway, such as a smartphone
or a laptop with custom applications installed, to translate standard GATT-based BLE packets into
Internet Protocol (IP) packets that are sent to a predefined server on the Internet. This gateway-
based data exchange, however, means that BLE devices cannot seamlessly communicate with
other devices on the Internet, causing interoperability, scalability, and evolvability issues [43,232].

To combat these problems, the Internet Engineering Task Force (IETF) released the RFC 7668
defining how BLE devices can directly exchange IPv6 packets with other IPv6-enabled devices on
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the Internet [156]. This so-called IPv6-over-BLE communication allows BLE nodes to seamlessly
participate in the IoT without requiring application-specific translation between plain GATT-based
BLE data and IP packets at a gateway. Although experimental studies show the potential of IPv6
over BLE [92, 152, 209], how resource- and energy-constrained devices can efficiently use IPv6-
over-BLE communication is still an open question.

Moreover, IPv6-over-BLE devices are likely to experience different kinds of IPv6 traffic, such
as exchanging critical data with a cloud server or sporadic ICMPv6 traffic from other devices on
the Internet. It is important that IPv6-over-BLE devices have the ability to support different QoS
levels of IPv6 packets and prioritize high-priority traffic (e.g., time-critical data packets) over other
data exchange. Unfortunately, how IPv6-over-BLE devices can support different QoS levels on
top of IPv6 is unknown so far. This gap in research leads to our second research question:

RQ 2: How can constrained BLE devices use IPv6 over BLE to efficiently connect to the Internet
and allow reliable exchange of time-critical data?

BLE nodes meeting end-to-end requirements. When BLE nodes exchange data with a cloud
server, their communication may not only experience problems due to interference or multipath
fading, but may also experience loss and delay on the external network path, i.e., the network path
outside the local BLE subnet. Although answering our RQ 1 and RQ 2 may significantly improve
the communication performance of BLE nodes connected to the Internet, the resulting solutions
may not be enough to meet stringent end-to-end requirements across the Internet, as they do not
account for any loss and delay across the external network path. To successfully meet given end-
to-end communication requirements, like a given reliability and latency, BLE nodes need to also
capture and adapt to all loss and delay across the entire network path.

Several studies investigate how to capture and adapt to changes in loss and delay over the Inter-
net [1,2,21,69,79,124,180], but they either focus on devices that use high-bandwidth Internet con-
nections and are not constrained in their processing capabilities and power supply [1,2,69,79,180]
or solely investigate how to increase the throughput of low-power nodes [21, 124]. Another large
body of research has investigated how to sustain latency and reliability bounds in low-power wire-
less networks [80, 102], but they do not account for communication that extends across the local
radio network. Unfortunately, even after more than a decade of research on IPv6-based low-power
radio networks, such as e.g., IPv6 over IEEE 802.15.4, little is known about low-power nodes
capturing loss and delay across the whole network or meeting end-to-end requirements, such as a
given latency or reliability. This leads to our third research question:

RQ 3: How can low-power wireless nodes, such as BLE nodes, sustain a given end-to-end
reliability and latency over the Internet while operating on a constrained energy budget?

1.3 Contributions

In this thesis, we answer our three research questions and enable reliable and time-critical data
exchange in BLE-based IoT applications. Towards this goal, we make the following scientific
contributions:

Supporting time-critical data exchange over BLE connections. In the first contribution of this
thesis, we answer our first research question (RQ 1) and allow BLE devices to reliably exchange
data within a given transmission latency bound over a BLE connection. To enable such time-
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critical communication, we investigate in detail the real-world performance of BLE communica-
tions under different environmental conditions and design three novel BLE adaptation mechanisms
that are fully compliant to the BLE specification and allow off-the-shelf BLE devices to optimize
their communication performance at runtime. All three BLE adaptation mechanisms can be used
on off-the-shelf BLE devices to optimize the performance of BLE connections in dynamic, real-
world application environments.

BLE channel management. We investigate how the overall BLE link-layer reliability and the re-
liability of individual BLE data channels are affected by different link-layer problems caused by
external radio interference or fading effects. Based on our experimental results, we design an
effective and hardware-independent BLE channel estimation and management mechanism that
passively monitors the packet delivery ratio (PDR) of individual BLE data channels and dynam-
ically adapts the list of used data channels to improve link-layer reliability. We implement our
BLE channel estimation and management mechanism on two popular BLE hardware platforms,
the Raspberry Pi 3 as well as the Nordic Semiconductor nRF52 platform, and experimentally show
that our BLE channel management improves the link-layer reliability of a BLE connection by up
to 22% without introducing additional power consumption.

Our solutions can potentially be applied to other wireless technologies using link-layer acknowl-
edgments to estimate the quality of individual data channels without introducing any unnecessary
energy consumption caused by probing packets. Such detailed channel knowledge may be uti-
lized to efficiently manage the used channels of a wireless connection, as we show in our work,
or to passively monitor the overall communication quality, e.g., to choose the best out of multiple
available routing devices.

BLE PHY mode adaptation. We extensively evaluate the performance of all four BLE PHY modes
available for connection-based BLE communication. Using our findings, we design an effective
BLE PHY mode adaptation mechanism that uses SNR measurements to dynamically choose the
most suitable PHY mode to sustain a specified link-layer reliability and limit the power consump-
tion of BLE devices. Our PHY adaptation mechanism, indeed, is able to sustain a link-layer
reliability of 99% while minimizing the power consumption of BLE devices when possible. Fur-
thermore, our PHY mode adaptation and our channel management successfully work in parallel
to cooperatively improve the reliability of BLE connections.

Our effective PHY adaptation mechanism can potentially be used by other wireless devices,
which support different PHY modes, to choose the most suitable PHY mode to sustain a given
reliability while minimizing energy waste. Especially low-power wireless technologies that si-
multaneously use channel management and PHY mode adaptation may use our mechanisms to
ensure that these two mechanisms work cooperatively and do not interfere with each other.

BLE connection parameter adaptation. We present how off-the-shelf BLE devices can monitor
and control the delay of individual data transmissions over a BLE connection. Towards this goal,
we show how BLE devices can passively monitor BLE transmission delays by using timing in-
formation on the standardized BLE Host Controller Interface (HCI). BLE devices can use these
delay estimates in combination with our novel BLE latency models to dynamically adapt their
BLE connection parameters to sustain a given transmission latency while minimizing their power
consumption. An evaluation using four different BLE hardware platforms shows that our parame-
ter adaptation mechanism reduces the number of packets exceeding the given transmission latency
by up to a factor of 40.
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Our passive delay monitoring may be used on top of other wired or wireless communication
technologies, where the individual transmission and retransmission behavior is hidden to devel-
opers (e.g., it is implemented by a separate closed-source communication peripheral), and upper
communication layers simply interact with lower layers over packet buffers. By using our moni-
toring mechanism, developers are potentially able to estimate and control the transmission delay
over such communication technologies to create time-critical applications.

Connecting BLE devices to the IoT using IPv6. The second contribution of this thesis is
BLEach, the first full-fledged, open-source IPv6-over-BLE communication stack for constrained,
low-power devices. With our work on BLEach, we answer our research question 2 (RQ 2) and
allow BLE nodes to exchange IPv6 data packets with any other IP-compliant device on the Inter-
net. This enables BLE nodes to directly talk to any IPv6 device on the Internet without requiring
a gateway to translate standard GATT-based BLE data into IP packets. BLEach exposes the key
parameters of IPv6-over-BLE communication as tuning knobs, allowing IPv6-over-BLE perfor-
mance optimization at runtime. Using these exposed parameters, we go beyond the IPv6-over-BLE
specification and add support for multiple simultaneous QoS levels to IPv6 over BLE, by exploit-
ing its credit-based flow control. Experiments with BLEach show that it is fully interoperable with
other IPv6 devices, has a minimal processing and memory demand, and that IPv6-over-BLE com-
munication is more energy-efficient than IPv6 over IEEE 802.15.4. Furthermore, our proposed
IPv6-over-BLE QoS support successfully allows nodes to dynamically prioritize certain IPv6 traf-
fic flows over others.

Our QoS support can potentially be used by other communication technologies for constrained
devices that use credits to control packet flow and avoid buffer congestion. With our approach,
constrained nodes may prioritize certain IPv6 traffic flows over others and may even change the
priority of individual traffic flows at runtime, e.g., due to changing application requirements.

Meeting end-to-end requirements in BLE-based IoT applications. In our third contribution,
we answer our third research question (RQ 3) and show how BLE devices can seamlessly com-
municate with a cloud server on the Internet within given reliability and latency bounds. Towards
this goal, we extend our BLE latency model to capture the effect of the local BLE subnet, as well
as any packet loss or delays that are introduced by the external network path, i.e., the network path
between the routing device and the cloud server. We show how low-power wireless nodes, such
as BLE nodes, can accurately and efficiently estimate the communication latency and reliability
across the entire network path by using short and infrequent probing bursts. Our estimation ap-
proach is fully compliant to the end-to-end principle of IP, i.e., it does not require any changes to
routing devices on the network path. Using our novel end-to-end model and latency estimation,
low-power BLE nodes are able to meet given end-to-end reliability and latency requirements by
adapting their BLE connection parameters. An experimental evaluation of our approaches shows
that BLE nodes successfully meet a given end-to-end reliability of 99% and a given end-to-end
latency of 1000 ms when communicating with a server on the Internet. This holds true even when
the BLE connection is experiencing heavy link-layer problems and a cellular Internet connection
with long communication delays is used.

Since our solution fully adheres to the IP end-to-end principle, it may be used by other IP-based
radio nodes that need to estimate loss and delay across the entire network path while operating on
a limited energy budget. Following our proposed solution, low-power nodes are potentially able
to meet given end-to-end requirements for communication that spans across different networks.
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1.4 Thesis Structure

The remainder of this doctoral thesis is structured as follows. Chapter 2 presents the technical
foundations of BLE communication and the BLE communication stack. Chapter 3 summarizes re-
lated work on BLE, discusses state-of-the-art techniques for parameter adaptation in other wireless
technologies, and provides an overview of studies on time-critical Internet communication. Chap-
ter 4 focuses on optimizing data exchange over a BLE connection, by designing and evaluating
efficient BLE channel management, BLE PHY mode adaptation, and BLE connection parameter
adaptation mechanisms. In Chapter 5, we discuss how BLE devices can seamlessly exchange IPv6
packets with other devices on the Internet and present BLEach, our IPv6-over-BLE communica-
tion stack for constrained devices. Moreover, we show how IPv6-over-BLE devices can support
different QoS traffic classes and prioritize individual IPv6 traffic flows over others. Chapter 6
shows how BLE devices can use our BLE end-to-end latency model and a novel network latency
probing mechanism to sustain a given end-to-end reliability and latency while limiting the required
power consumption of the BLE device. Chapter 7 concludes this dissertation with a summary of
the contributions and a discussion of future research. Finally, a list of the scientific work that was
published during this dissertation is attached in Chapter 8.
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2
Foundations

This chapter presents the technical foundations of this dissertation. Section 2.1 discusses the
technical background of Bluetooth Low Energy (BLE) technology and Section 2.2 summarizes
the fundamental concepts of parameter adaptation approaches used in wireless technologies.

2.1 Bluetooth Low Energy (BLE) Technology

This section discusses the foundations of BLE technology. Section 2.1.1 explains the origins of
BLE and discusses the difference between BLE and Classic Bluetooth. Section 2.1.2 summarizes
the BLE communication stack. After that, this chapter discusses the two modes of BLE commu-
nication: connection-less BLE (Section 2.1.3) and connection-based BLE (Section 2.1.4). Finally,
we summarize how BLE devices can support IPv6-over-BLE communication in Section 2.1.5.

2.1.1 A Short History of BLE

Classic Bluetooth communication was invented in 1994 at Ericsson to replace serial cables
with short-range radio communication in the 2.4 GHz industrial, scientific and medical (ISM)
band [11]. After the official release of the first Bluetooth specification in 1999 and the first
Bluetooth-enabled mobile phone in 2001, Bluetooth communication has gained increased pop-
ularity and has been used for a wide range of use cases, such as audio streaming or printer and
keyboard connectivity [29]. Unfortunately, due to the different requirements of individual appli-
cations, the Bluetooth communication stack was getting increasingly complex and bloated. This
complexity resulted in Classic Bluetooth communication having a worse performance than other
low-power wireless technologies, such as IEEE 802.15.4 [34, 130].

To address the shortcomings of Classic Bluetooth, the Bluetooth Special Interest Group (SIG)
released Bluetooth version 4.0 in 2010, which introduced Bluetooth Low Energy (BLE) as a sec-
ond communication technology into its specification [22]. BLE is a complete redesign of Classic
Bluetooth technology with the objective to significantly reduce hardware complexity, code size,
and energy consumption. Since Bluetooth version 4.0, the Bluetooth specification contains two
different communication technologies, Classic Bluetooth and BLE, which share some communi-
cation stack layers and the Bluetooth brand but are not interoperable with each other.

Nowadays, almost all consumer devices with Bluetooth support are able to communicate over
Classic Bluetooth and BLE [192]. However, it is clear that BLE will replace Classic Bluetooth
communication in the foreseeable future, as new versions of the Bluetooth specification solely
focus on improving and extending BLE functionality. For example, since Bluetooth specifica-
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Figure 2.1: BLE communication stack consisting of a BLE controller connected via the BLE HCI to a BLE host.

tion version 5.0, BLE communication has the possibility to choose one out of four possible PHY
modes, which allows to either increase the communication range of BLE communication or allows
for higher data throughput [24]. Furthermore, BLE 5.0 devices can make use of extended adver-
tising, which allows for longer broadcast packets and more frequency diversity in connection-less
BLE communication. As of Bluetooth version 5.1, BLE devices can make use of angle-of-arrival
and angle-of-departure techniques in combination with antenna arrays to accurately locate indi-
vidual BLE devices [25]. With Bluetooth version 5.2, new BLE devices will have support for
high-fidelity audio streaming, the last stronghold of Classic Bluetooth communication [26]. Fi-
nally, the newest BLE version 5.3 proposes multiple improvements, such as periodic advertising
enhancement, faster BLE connection parameter adaptation, and channel classification enhance-
ment, which will further improve the real-time capabilities of connection-based BLE [27].

2.1.2 BLE Communication Stack

Figure 2.1 shows the standard BLE communication stack with its stack layers. As the figure shows,
the communication stack consists of two main components: the BLE controller and the BLE host.
Host and controller are connected via the standardized BLE Host Controller Interface (HCI).

2.1.2.1 BLE Controller

The BLE controller is usually a dedicated, proprietary communication system on chip (SoC) im-
plementing the BLE physical layer (PHY) and link layer. The BLE PHY layer specifies 40 differ-
ent channels in the unlicensed 2.4 GHz ISM band that are used for BLE communication (shown in
Figure 2.2). Furthermore, the PHY layer also defines four different PHY modes that BLE devices
can use for data exchange. The link layer handles BLE device addressing, schedules packet trans-
missions and receptions, as well as manages incoming and outgoing packet buffers. Moreover, the
link layer is responsible for BLE channel management, packet acknowledgment and flow control,
as well as synchronizing data exchange with peer devices.

To simplify the design and implementation of the BLE host, the BLE controller autonomously
handles all low-level behavior of BLE communication and acts as a “black box” to the upper
stack layers. The BLE host simply uses standardized HCI commands to establish a connection
or add packets to the outgoing packet buffer of the BLE controller to send data to a peer device.
Whenever the BLE controller receives data from a peer device, it notifies the host via standardized
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Figure 2.2: Frequency usage of the most popular wireless technologies in the 2.4 GHz ISM band (adapted from
[96]). The BLE legacy advertising channels (channels 37, 38, and 39) are shown in dark blue while
the BLE data channels (channels 0 to 36) are shown in light blue.

HCI events. All low-level communication details, such as link quality, used BLE channel, or the
number of necessary (re-)transmissions, are hidden to the BLE host. The host can only issue high-
level HCI commands to adapt the parameters of the BLE controller to change the communication
timing, power consumption, or achievable data rate of BLE communication.

Although the Bluetooth specification clearly defines how BLE controllers can interoperably ex-
change data with other BLE devices, the specification mandates only key details in the link layer
behavior that ensure interoperability. Other design decisions, such as the default communica-
tion parameters and the behavior of the adaptive BLE channel management, are not specified or
discussed by the Bluetooth SIG. This leads to some manufacturers implementing effective chan-
nel management strategies in their BLE controllers, while other controllers only implement the
mandatory behavior as specified. Therefore, BLE controllers from different manufacturers may
significantly differ in terms of their behavior, especially when experiencing link-layer problems,
as we show in Section 4.1.

2.1.2.2 BLE Host

The BLE host is located on the main application processor of a BLE device and implements the
upper BLE stack layers and the BLE application.

One important layer for connection-based BLE is the Logical Link Control and Adaptation Pro-
tocol (L2CAP) layer, which is the interface between the higher layer protocols and the BLE con-
troller. The L2CAP layer is responsible for fragmenting large data packets into smaller fragments
that are individually sent over BLE connections and reassembled at the peer device. Furthermore,
this layer also implements multiplexing and demultiplexing of the higher layer protocols, so that
these protocols can operate simultaneously over a BLE connection.

The Attribute Protocol (ATT) defines a standardized way for BLE devices to discover, read,
and write attributes from peer devices. The ATT follows a client-server model, where a server
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Figure 2.3: Connection-less BLE communication between an advertiser and a scanner. The advertiser uses all
three BLE legacy advertising channels in every advertising event and is successfully detected by the
scanner in scanning event M2.

exposes different attributes that a connected client can read and write. The Generic Attribute
Profile (GATT) uses ATT primitives and defines a standardized protocol that allows devices to
interoperably expose GATT services and characteristics to other BLE devices. This GATT-based
data exchange is the standard way for BLE devices to interact with BLE-enabled smartphones,
tablets, and laptops. For example, a BLE-based heartrate monitor uses ATT and GATT to expose
a heartrate service containing a heartrate measurement attribute. Nearby smartphones can detect
this standardized heart rate service and can read the current heart rate measurement using ATT and
GATT primitives.

The Security Manager (SM) layer provides BLE devices with security and privacy features that
are required for state-of-the-art applications. Therefore, the SM layer defines procedures for de-
vice pairing, data encryption, authentification, or random device addresses, as well as allows key
generation and storage. Finally, the Generic Access Profile (GAP) defines all mandatory function-
ality of BLE devices and ensures that BLE operations, such as device discovery, connection setup,
and data exchange, work interoperably between devices from different manufacturers [91].

In Section 2.1.5, we will summarize how the BLE host can be extended to allow BLE devices to
directly exchange IPv6 packets instead of GATT-based data exchanges. Furthermore, we will dis-
cuss how constrained BLE devices can implement this so-called IPv6-over-BLE communication
in Chapter 5 of this dissertation. Next, we discuss the two modes of BLE communication.

2.1.3 Connection-less BLE Communication

In the simple connection-less communication mode, also known as BLE advertising, a BLE device
acts as either advertiser or scanner. An advertiser periodically broadcasts short unidirectional data
packets to nearby devices and a scanner listens for such advertising packets. A typical use case for
connection-less BLE is device discovery, where an advertiser broadcasts its BLE capabilities (e.g.,
a BLE heart rate wearable advertises its heartrate measurement capabilities). If a scanner receives
a fitting advertising packet, it may read additional characteristics via a BLE scan request or may
initiate a BLE connection to enable bidirectional data exchange. Another use case for connection-
less BLE communication is BLE Mesh, where BLE devices use connection-less primitives (i.e.,
advertising and scanning) to exchange data within a multi-hop mesh network [28].
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A BLE advertiser periodically broadcasts data during advertising events, which are non-
overlapping timeslots equally spaced out over time. The time between the start of two consecutive
advertising events is defined by the BLE advertising interval, as shown in Figure 2.3. During an
advertising event, the advertiser uses up to three dedicated channels, so-called BLE legacy adver-
tising channels (shown in dark blue in Figure 2.2), to broadcast messages with a maximum length
of 31 bytes. Similarly, a BLE scanner periodically performs scanning events, during which the
scanner listens to one of the three legacy advertising channels for advertising packets. The timing
of these scanning events is defined by two parameters: the scan interval defining the time between
the start of two consecutive scanning events and the scan window defining the time the radio scans
during an individual scanning event. Whenever an advertiser broadcasts on the same channel a
scanner is currently listening to, an advertising packet can successfully be received. In case a
scanner has successfully received an advertising packet, the scanner may perform one of three
possible actions: (i) continue listening for other advertising packets, (ii) sending a scan request to
the advertiser asking for additional data, or (iii) initiating a connection with the advertiser.

Figure 2.3 shows an exemplary BLE connection-less data exchange. The advertiser is periodi-
cally broadcasting short advertising packets on all three legacy advertising channels during every
advertising event. The scanner is periodically scanning for nearby advertising packets. In scanning
event M2, the scanner is listening to one of the legacy advertising channels where the advertiser
is simultaneously broadcasting data. Therefore, the scanner successfully receives an advertising
packet from the advertiser and may initiate a BLE connection.

Since BLE version 5, devices may use additional connection-less features that are grouped under
the term extended advertising [24]. Using extended advertising, devices may use all 40 available
BLE channels for advertising/scanning and can use broadcast packets with a maximum length of
254 bytes. Nevertheless, connection-less BLE only allows unidirectional data exchange from an
advertiser to one or multiple scanners. Furthermore, connection-less BLE is inherently unreliable
when experiencing link-layer problems (e.g., caused by Wi-Fi interference), as connection-less
BLE does not use any link-layer acknowledgments or autonomous retransmissions. To allow a
reliable and bidirectional data exchange, BLE devices need to use the connection-based commu-
nication mode of BLE, which we discuss next.

2.1.4 Connection-based BLE Communication

Whenever two BLE devices want to bidirectionally exchange data, they need to establish a BLE
connection using connection-less primitives. In the created BLE connection, the former advertiser
acts as BLE slave and the former scanner acts as BLE master.1

Communication over a BLE connection happens during connection events, which are non-
overlapping timeslots where master and slave take turns in sending packets to each other. The
time between the start of two consecutive connection events of a BLE connection is defined by
the BLE connection interval (CI) parameter, as shown in Figure 2.4. A small CI means that both
BLE devices wake up frequently to exchange BLE link-layer packets, leading to a lower trans-

1 Please note that the terms master and slave may be controversial due to their historic associations and that the
newest BLE specification version 5.3 [27] released in 2021 changed these terms to Central and Peripheral. To avoid
any technical confusion, however, we follow the nomenclature used in the official BLE specifications before version
5.3 and our previously released publications and use the technical terms master and slave in some places to indicate
the role of a device in connection-based BLE.
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Figure 2.4: Connection setup and data exchange over a BLE connection between a BLE master and slave. The
subfigures show how the slave latency (SL) affects the slave’s behavior. Adapted from Publication B.

mission delay and a higher maximum data rate, but also causes a significant increase in the power
consumption on both BLE devices. During a connection event, both BLE devices bidirectionally
exchange link-layer packets until both devices have no more data to send or until the maximum
duration of a connection event (tCE) has been reached. Even if both devices have no data to send,
they exchange short link-layer keep-alive packets, which only consist of the mandatory link-layer
header, to maintain the connection. As these keep-alive messages cause unnecessary power con-
sumption on BLE devices, the BLE specification foresees the BLE slave latency (SL) parameter,
which allows the BLE slave device to skip up to SL connection events (as shown in Figure 2.4(b)).

Figure 2.4 shows two examples of a master and slave communicating over a BLE connection
using different SL configurations. In the example shown in Figure 2.4(a), master and slave use
connection-less BLE primitives to establish a BLE connection. The master starts connection event
N0 by sending a keep-alive packet (shown in blue) to the slave and the slave responds with a
link-layer data packet (shown in yellow) carrying application data. During connection event N1,
both master and slave have no data to transmit and therefore only exchange the mandatory keep-
alive packets to maintain the BLE connection. During connection event N2, the master starts with
sending data to the slave. As the data exceeds the maximum BLE link-layer packet length of
251 bytes, the master splits the data into two link-layer data packets that are both acknowledged
via keep-alive packets by the slave. The example shown in Figure 2.4(b) is similar to the example
in Figure 2.4(a), but the BLE slave is using a SL = 1 to skip unnecessary connection events,
where only keep-alive messages would be exchanged. The different SL behavior can be seen
when comparing connection events N1 and N3 in Figure 2.4(a) and Figure 2.4(b). When SL = 0,
the slave needs to wake up during every connection event to exchange the mandatory keep-alive
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packets, as shown in Figure 2.4(a). In case SL > 0, the slave may skip up to SL connection events
to avoid unnecessary energy consumption, as shown in Figure 2.4(b).

Data channel management. At the beginning of every connection event, the Adaptive Frequency
Hopping (AFH) mechanism of connection-based BLE selects one out of 37 BLE data channels
(shown in light blue in Figure 2.2)2. The selected channel is then used for all link-layer packet ex-
changes during the whole connection event, however, a new channel is chosen for every connection
event. Since all 37 BLE data channels are located in the 2.4 GHz ISM band, individual channels
may have poor quality due to fading effects or external interference. To mitigate the effects of
poor-quality channels on the overall BLE connection, BLE devices may adaptively blacklist in-
dividual data channels by dynamically updating the channel map (Cmap) of the BLE connection.
The Cmap of a connection defines which BLE data channel may be selected by the AFH mecha-
nism, i.e., if a data channel is blacklisted in the Cmap, it will not be used for communication until
being whitelisted again.

Although the BLE specification defines primitives for updating the Cmap at runtime, it does
not define how to detect channels with poor quality and when to blacklist them. However, in
Section 4.1.2 of this dissertation, we present an effective and efficient BLE channel management
approach for off-the-shelf BLE devices that black- and whitelists individual BLE data channels.

Link-layer acknowledgment and flow control. As mentioned above, the BLE link layer auto-
matically handles packet acknowledgments (ACK) and flow control using a 1-bit ACK field and
a 1-bit sequence number in the link-layer header of every packet. If a link-layer packet is not
successfully acknowledged by the peer device, the BLE link layer autonomously re-transmits this
packet until a corresponding acknowledgment is received. This means that the link layer ensures
that link-layer packets are reliably sent to the peer in the correct order. The BLE host simply adds
data to the outgoing link-layer packet buffer to transmit data to its peer. Furthermore, the host
is notified by the link layer if any data packet has been successfully received. All the low-level
behavior is implemented by the link layer and hidden to the BLE host.

PHY mode. Since BLE version 5.0, BLE devices are able to select one out of four possible phys-
ical layer (PHY) modes for transmitting link-layer packets: the 1M PHY, the 2M PHY, the Coded
S2 PHY, and the Coded S8 PHY. The 1M PHY is the original mode of BLE communication and
is the only available PHY mode on BLE devices with a version below BLE 5.0. The 1M stands for
the physical modulation of 1 Msym/s (Megasymbols per second) used by this PHY. The 1M PHY
does not use any symbol coding or forward error correction (FEC) to increase its communication
robustness. The 2M PHY enables BLE devices to exchange data with approximately twice the
data rate compared to the 1M PHY. The 2M PHY achieves this high data rate by using a physical
modulation of 2 Msym/s and no symbol coding or FEC. The Coded S2 PHY and the Coded S8
PHY both use symbol coding and FEC to reconstruct flipped bits in received packets. Using these
techniques, both Coded PHY modes achieve a more robust communication, which leads to signif-
icantly higher communication ranges. Like the 1M PHY mode, both Coded PHYs use a physical
modulation of 1 Msym/s. As the name suggests, the Coded S2 PHY uses a symbol coding of 2,
which means that every data bit is coded into 2 symbols over the air, resulting in a maximum
physical data rate of 500 kb/s. Likewise, the Coded S8 PHY uses a symbol coding of 8, leading to
a maximum physical data rate of 125 kb/s.

2 Since BLE version 5, the BLE master can make use of two possible channel selection algorithms (CSAs). The used
CSA, however, does not significantly affect the link-layer reliability of a BLE connection, as we show in Chapter 4.
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Figure 2.5: IPv6-over-BLE communication stack according to the RFC 7668 [156].

Parameter adaptation. During the connection setup, the BLE master sets the initial parame-
ters (i.e., CI , SL, PHY mode, and Cmap) of the BLE connection. However, the parameters of
the BLE connection may be adapted during runtime due to changing application requirements
or environmental conditions. The BLE master may update any of the above parameters by ex-
changing standardized BLE link-layer commands with the BLE slave. For example, the BLE
master may update the used CI and SL by sending a link-layer connection parameter update
(LL CONNECTION PARAM IND) containing the new connection parameters. Similarly, the mas-
ter may issue a link-layer PHY update request (LL PHY UPDATE IND) to adapt the used PHY
mode or send a link-layer channel map update (LL CHANNEL MAP IND) to change the used
Cmap, respectively. The BLE specification defines a mandatory delay of at least six connection
events between a master issuing a parameter update and the new parameters being used3.

Unlike the BLE master that can adapt the parameters at any point in time, the BLE slave
may only request changes to the BLE connection parameters or the used PHY mode from the
master. For example, the slave may request new CI and SL parameters by sending a link-
layer connection parameter update request (LL CONNECTION PARAM REQ) to the master. Like-
wise, the slave may request a different PHY mode by issuing a link-layer PHY update request
(LL PHY UPDATE REQ). After the master has received any of these requests, it may decide to
either decline the request and respond with a negative acknowledgment (NACK) or accept the
request and send an acknowledgment (ACK) followed by a parameter update as described above.

In Chapter 4 and Chapter 6 of this dissertation, we will show how BLE devices can use these
parameter adaptation mechanisms to sustain specific communication requirements, such as a given
reliability or latency while limiting the power consumption of BLE devices.

2.1.5 IPv6 over BLE

In this section, we show how BLE devices can make use of IPv6-over-BLE communication, as
standardized by the RFC 7668 [156], to directly exchange Internet Protocol version 6 (IPv6) pack-
ets with other IP-enabled devices on the Internet.

Figure 2.5 shows the architecture of the IPv6-over-BLE communication stack as specified by

3 With the release of BLE specification version 5.3 in July 2021 [27], BLE devices gain the ability to subrate BLE
connections, which allows a faster BLE connection parameter adaptation under certain conditions. Because this
feature is not yet supported in existing BLE hardware platforms, this dissertation sticks to the mandatory delay of at
least six connection events when updating BLE parameters.
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the RFC 7668 [156]. IPv6 over BLE reuses major parts of the standard BLE stack, such as the
whole BLE controller and the BLE L2CAP layer. However, instead of using the ATT, GATT, and
GAP protocol, IPv6 over BLE makes use of 6LoWPAN, a bundle of techniques that have been
developed to connect IEEE 802.15.4 devices via IPv6 to the Internet, to exchange IPv6 data over
BLE connections. Specifically, IPv6 over BLE requires the following stack layers:

IPv6-over-BLE communication reuses the existing BLE controller and the BLE HCI. IPv6-over-
BLE nodes use BLE advertisements to broadcast their capabilities and wait for an IPv6-over-BLE
router to establish a BLE connection. After a successful connection establishment, node and router
use only connection-based BLE communication to bidirectionally exchange data.

IPv6 over BLE makes use of the existing L2CAP layer to handle fragmentation and reassem-
bly of large IPv6 packets as well as buffer overflow prevention. One difference to the GATT-
based BLE communication, however, is that exchanging IPv6 data requires the use of connection-
oriented L2CAP channels in LE credit-based flow control mode [156]. This credit-based flow
control mode allows BLE devices to exchange large IPv6 packets over constrained BLE connec-
tions by splitting large packets into multiple smaller L2CAP fragments. To exchange such L2CAP
fragments, the L2CAP layer establishes a logical channel between the two IPv6-over-BLE devices
during connection setup. Once such a channel is established, L2CAP uses credits to control the
flow of individual fragments. During setup, each device grants its peer a number of initial credits.
Furthermore, a device may grant its peer additional credits anytime using a dedicated L2CAP sig-
naling channel. Sending one L2CAP fragment costs one credit and if a device has no more credits
left, it cannot send any more fragments.

The 6LoWPAN layer sits on top of the L2CAP layer and is responsible for improving the ef-
ficiency of IPv6 communication by performing IPv6 header compression. The 6LoWPAN layer
for IPv6 over BLE is based on the 6LoWPAN for IPv6 over IEEE 802.15.4, as specified by the
RFC 6282 [101], but does not handle fragmentation of IPv6 packets, as this is already done by
the L2CAP layer below. Using 6LoWPAN header compression, the 40-byte long IPv6 packet
header may reduce down to 3 bytes. IPv6 over BLE uses ordinary IPv6 packets in the network
layer, which makes IPv6 over BLE fully interoperable with any other IPv6 device. Furthermore,
any transport layer capable of transporting IPv6 packets, such as UDP or TCP, can be used to
exchange application data.

In Chapter 5, we will show in detail how constrained BLE nodes can make use of IPv6 over
BLE. We further discuss how plain IPv6-over-BLE communication can be extended to support
different QoS levels.

2.2 Foundations of Wireless Parameter Adaptation

In this section, we discuss the most common parameter adaptation techniques in wireless technolo-
gies that are used to improve communication performance or sustain a given QoS. First, we list
the most common communication parameters of wireless technologies in Section 2.2.1. Second,
we discuss the different approaches for estimating the quality of wireless links in Section 2.2.2.
Third, we summarize different kinds of models of wireless communication that may be used to find
suitable wireless parameters in Section 2.2.3. Forth, we describe different parameter adaptation
approaches used in wireless technologies in Section 2.2.4.
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2.2.1 Communication Parameters

Wireless communication systems have multiple parameters that affect key performance metrics,
such as latency, reliability, throughput, communication range, or energy efficiency. Devices may
adapt one or multiple of these parameters at runtime, e.g., to improve reliability or decrease power
draw. The most common parameters are:

Transmission power. The transmission power of wireless transmissions significantly affects the
communication range, transmission reliability, and power consumption of wireless devices. A high
transmission power leads to successful packet transmissions over long communication ranges, as
the transmitted packet can still be successfully decoded at the receiving device. Unfortunately,
higher transmission powers also lead to a significantly higher power consumption of the trans-
mitting devices. A low transmission power, in contrast, leads to a more energy-efficient wireless
data exchange at the cost of reduced communication range and reliability. Because the used trans-
mission power affects communication reliability and energy efficiency, multiple radio technolo-
gies dynamically adapt their transmission power at runtime. For example, IEEE 802.15.4 [134],
LoRa [35], Wi-Fi [114], cellular [19, 123], and UWB [88] dynamically change their transmission
power (amongst other parameters) to improve communication performance.

Communication channel. The used communication channel, i.e., the frequency band used for
wireless data exchange, significantly affects the communication performance of wireless tech-
nologies. For example, the communication channel width impacts the maximum achievable data
rate of wireless communication, i.e., a wide channel allows a higher data rate than a narrow chan-
nel. Some wireless technologies, like BLE and IEEE 802.15.4, use only narrow communication
channels with fixed channel width. Other wireless technologies, which are typically less energy-
constrained, however, can dynamically change the used channel width to make efficient use of the
available frequency spectrum and improve communication performance. For example, 4G and 5G
devices dynamically adapt the channel width of an upcoming packet transmission depending on
the current RF environment [157, 228]. Similarly, state-of-the-art Wi-Fi devices adapt the used
channel width at runtime to improve the efficiency of their channel usage [125, 164].

If a communication channel has a bad quality, e.g., caused by external interference or fading ef-
fects, its communication reliability drops significantly, which in turn negatively affects communi-
cation latency, throughput, and energy efficiency. Therefore, most wireless technologies offer the
ability to switch the used wireless channel to optimize their communication performance. Some
technologies, such as Wi-Fi [139], allow changing the used channel reactively, e.g., when the link
quality turns bad. Other technologies, such as BLE, proactively use frequency hopping techniques
to mitigate the impact of individual bad channels on the overall communication performance, as
we discuss in detail in Section 4.1.2 of this dissertation.

Modulation. The modulation of wireless signals defines how a stream of digital data is trans-
formed into a continuous-time signal that can be transmitted over the air [126]. Typical parameters
of a modulation scheme are the physical modulation rate, the information per exchanged symbol,
and which aspect of a wave signal is used to encode information (frequency, amplitude, or phase).
As the modulation significantly impacts communication reliability, energy efficiency, and achiev-
able data rate, some wireless technologies allow to dynamically adapt their modulation scheme.
For example, 4G devices may change their modulation scheme at runtime to improve achievable
throughput and reliability [123].
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Coding. Coding defines how application data is translated into symbols sent over the air, and
vice versa [126]. The used coding scheme impacts maximum data throughput, communication
range and reliability, transmission latency, as well as the energy efficiency of wireless commu-
nication. Robust coding schemes typically use redundancy and error correction techniques that
allow packets to still be decoded/recovered at the receiving device, at the price of longer radio-on
times and therefore higher power consumption per packet. Lightweight coding schemes may use
only error detection and no redundancy to provide very energy-efficient coding at the cost of lower
communication reliability. Similar to modulation, modern wireless technologies may dynamically
adapt their coding scheme to optimize their communication performance. For example, 4G [123],
LoRa [197], and UWB [88] devices may change the coding scheme at runtime. In Section 4.1.3,
we show how BLE devices can adapt aspects of their coding scheme at runtime to sustain a given
communication reliability.

Packet length. The used data packet length affects the communication reliability, latency, and data
throughput. The overhead per packet (i.e., packet header) usually does not depend on the actual
data length of a packet. Therefore, longer packets lead to relatively less communication overhead
and higher achievable data throughput. However, longer packets are more likely to be interfered
and have generally a higher probability of containing at least one bit error and may hence need to
be retransmitted, leading to a poorer communication performance in noisy environments. Wireless
technologies may dynamically adapt their maximum packet lengths depending on the transmission
reliability to improve communication performance. For example, IEEE 802.15.4 networks may
adapt the used packet length depending on the current noise in the environment to improve channel
utilization [61] or energy efficiency [62].

Packet timing. The timing of packet transmissions affects the communication latency, data
throughput, and energy efficiency of the wireless data exchange. This is especially true for radio
technologies, where individual devices can only exchange data within dedicated periodic commu-
nication slots. If a device has very frequent communication slots, it can achieve high data through-
put and low communication latency at the price of increased energy consumption. If communica-
tion slots are infrequent, the wireless device can conserve energy, but can also achieve only low
throughput and experience high transmission latencies. For example, the timing of IEEE 802.15.4
transmissions may be adapted to improve network performance [67, 236, 237]. In Chapters 4 and
6 of this thesis, we show how the timing of packets sent over a BLE connection can be adapted at
runtime to sustain given latency bounds while minimizing power consumption.

Redundant transmissions. Some wireless technologies may even transmit parts of a packet or
whole packets multiple times to introduce redundancy and therefore improve communication re-
liability at the cost of increased power consumption and decreased achievable throughput. Other
than coding, where the redundancy may be contained within individual packets, using redundant
transmissions spreads the redundancy across multiple data packets. For example, IEEE 802.15.4
devices may use redundant transmissions of the packet header to improve reliability under interfer-
ence [133] or transmit whole packets multiple times to improve communication performance [76].
5G devices may also use redundant packet transmissions to achieve ultra-reliable low-latency com-
munication (URLLC) [187].
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2.2.2 Link Quality Estimation

Estimating the quality of a wireless link is vital for monitoring and controlling the performance of
wireless data exchanges. Having good estimates of the underlying radio link quality is an impor-
tant building block of adaptation mechanisms that try to mitigate link-layer problems. According
to Baccour et al. [15], the process of link quality estimation of a wireless link consists of three
subsequent steps: link monitoring, link measurement, and metric evaluation.

2.2.2.1 Link Monitoring

Link monitoring defines the strategy of how individual link measurements are retrieved. In general,
there are three different kinds of link monitoring: active, passive, and hybrid link monitoring.

Active link monitoring. Using active link monitoring, wireless devices use dedicated probing
packets to monitor the quality of individual channels. Such probing packets are typically sent pe-
riodically and in addition to ordinary data exchange, which introduces additional communication
overhead (and therefore energy consumption). The benefit of dedicated probing packets, however,
is that they can be used to also probe frequencies that are not regularly used for data exchange.
Active monitoring is often used in wireless networks to measure the quality of radio channels. For
example, IEEE 802.15.4 devices may actively probe individual channels to detect if a channel is
occupied by co-located radio devices [63,74,215]. Likewise, Wi-Fi devices may actively measure
the noise floor on all channels to select the best Wi-Fi channel for communication [20, 114].

Passive link monitoring. In contrast to active link monitoring, passive link monitoring approaches
use existing data exchanges to monitor the link. Passive link monitoring approaches are therefore
more energy-efficient, as they do not introduce any additional data exchange for monitoring pur-
poses. Such passive approaches, however, are only able to probe channels used for data exchange.
Channels that are not used for communication are not probed using passive link monitoring. Pas-
sive monitoring is a popular technique used by low-power wireless devices to monitor the quality
of their wireless links. Many IEEE 802.15.4 devices passively estimate the link quality to choose
a single suitable channel [225] out of a set of channels [70,131] for communication. In Section 4.1
of this dissertation, we also make use of passive link monitoring to improve the reliability of BLE
connections via effective channel management.

Hybrid link monitoring. Some link monitoring approaches combine both active and passive
monitoring techniques. These hybrid approaches usually provide a good tradeoff between energy
efficiency and periodic link measurements. For example, low-power IEEE 802.15.4 devices in
multihop networks combine active probing with passive estimation techniques to sustain time-
critical data exchange in industrial settings [86, 215].

2.2.2.2 Link Measurement

Link quality estimators may measure one or multiple link metrics that can be gathered on the
sending or receiving device.

Wireless devices can use information about packet transmissions to measure the link. For exam-
ple, devices may investigate packet sequence numbers, number of retransmissions, or transmission
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timestamps to calculate the current packet delivery ratio (PDR) [70,188] or the expected transmis-
sion count (ETX) [122, 188] over a link. Furthermore, devices can use information about re-
ceived packets or acknowledgments to extract link measurements. Such information may include
the received signal strength indicator (RSSI) [86, 189], the signal-to-noise ratio (SNR) [137], the
checksum status, or a dedicated link quality indicator (LQI) [120] provided by the radio hardware.

Section 4.1 of this thesis investigates the available BLE link metrics in detail. We list and
discuss the BLE link metrics available on off-the-shelf BLE devices and show how the PDR and
the SNR of BLE data packets can be used for effective BLE channel management and PHY mode
adaptation, respectively.

2.2.2.3 Link Metric Evaluation

To get an estimate of the link quality of a channel, devices need to combine recent link measure-
ments with a link quality estimation approach.

Some devices use simple estimation techniques, such as low-pass filters, simple averaging, ex-
ponentially weighted moving average (EWMA), or counting how many measurements exceed a
given threshold, for link metric evaluation [63, 70, 121, 137, 215]. These techniques require min-
imal memory and computing resources and, therefore, fit on almost any device. Simultaneously,
these techniques provide estimates that are accurate enough for most applications.

If a more sophisticated link estimation is required by an application, devices may use more
advanced filtering techniques, ranging from Kalman filters [105] over probabilistic models [69]
to powerful machine learning (ML)-based estimation approaches [180]. These estimation tech-
niques, however, may require significantly more memory and computing resources, making them
often not suitable for very constrained devices.

In Chapter 4 and 6, we show how BLE devices can use simple estimation techniques to accu-
rately estimate loss and delay over BLE connections.

2.2.3 Modelling Approaches

Models of wireless communications are often used to predict the performance of different com-
munication parameters or to choose suitable communication parameters for parameter adaptation.

Analytical model. One common way of modeling wireless communication is to use purely an-
alytical models. Deriving an analytical model of a specific wireless technology, however, may
be tricky, as it requires detailed knowledge of the underlying communication mechanisms of the
technology. One benefit of analytical models is that they have a closed form, i.e., they can be
mathematically solved to get suitable communication parameters for given requirements. Ana-
lytical models are very popular in wireless networks, such as IEEE 802.15.4 and BLE networks,
to model and optimize key performance metrics, like energy consumption, latency, and reliabil-
ity [33,68,116,118,179,190]. In this dissertation, we derive such analytical models for connection-
based BLE communication and use these models to sustain given end-to-end requirements.

Data-driven model. In contrast to analytical models, data-driven models use ML techniques
to derive a communication model for a given wireless technology. These data-driven models
do not require intricate knowledge of the communication mechanisms of the wireless technology,
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however, they usually require a vast number of previously recorded training data to accurately train
the wireless communication model. Such data-driven models are, for example, used in wireless
networks to model and control communication reliability [137, 231] or latency [180].

Mixed model. Some techniques combine the above approaches to derive suitable models of wire-
less communication. One possible way to mix these approaches is to generate a suitable base
analytical communication model and use data-driven modeling to calibrate the model parame-
ters. For example, such an approach is used by Fernandez et al. [74] to derive several analytical
reliability models of IEEE 802.15.4 links and use recorded data for model calibration.

2.2.4 Parameter Adaptation

To optimize communication performance and sustain given application requirements, wireless
devices may dynamically adapt one or multiple communication parameters at runtime. To adapt
communication parameters, devices may use the following adaptation approaches:

Rule-based adaptation. The simplest way to adapt communication parameters at runtime is to
use predefined adaptation rules. Using such adaptation rules, a device may change communication
parameters whenever a measured link quality metric reaches a given threshold. Depending on the
application requirements, such a threshold may be fixed [70, 131] or adaptive [121]. For exam-
ple, a radio device estimates the communication reliability of a radio link via PDR measurements.
Whenever the measured PDR drops below a given reliability threshold, the device adapts its com-
munication parameters to a more reliable setting to achieve a higher reliability. Such adaptation
approaches are successfully used in IEEE 802.15.4 [70, 131], LoRa [197], UWB [88], and 4G
networks [123] to optimize performance.

A drawback of rule-based adaptation is that devices may continuously oscillate between two
different parameter settings under certain environmental conditions, leading to insufficient com-
munication performance. To combat such oscillation, most rule-based adaptation approaches use
an adaptation hysteresis, i.e., the device uses two different thresholds for parameter switching. For
example, a device uses rule-based adaptation to sustain a PDR of 90%, but due to environmental
conditions, the device oscillates between two parameter sets. To mitigate oscillation, the device
switches to more robust communication parameters when the PDR drops below 90%, but only
switches to less robust (but more energy efficient) settings when it experiences a PDR of 95%.

In Section 4.1 of this thesis, we use rule-based adaptation to design an efficient BLE channel
management and an efficient BLE PHY mode adaptation to improve the reliability of BLE.

Model-based adaptation. Another parameter adaptation approach is to make use of detailed
models (as discussed in Section 2.2.3) to select a suitable set of new communication parameters.
Using the current environmental state (e.g., link-layer loss due to interference) and application
requirements, devices can calculate the best communication parameters for the current condi-
tions. As discussed in Section 2.2.3, devices using closed-form models can analytically calcu-
late the most suitable communication parameters [116, 179]. More complex models, however,
require devices to use network calculus [80] or optimization techniques (e.g., mixed integer non-
linear programming) [138, 237]. Model-based adaptation approaches are successfully used in
IEEE 802.15.4 [75, 102], 4G [195], 5G[19] and Wi-Fi networks [114] to optimize performance.

In Section 4.2 and Chapter 6, we use our analytic BLE models to adapt the BLE connection
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parameters at runtime to sustain given application requirements.

Control-based adaptation. Wireless devices can make use of feedback control to adapt their used
communication parameters to sustain given application requirements. Using such adaptation ap-
proaches, a device continuously monitors communication feedback and gradually changes one or
multiple communication parameters until the desired communication performance is reached. For
example, 5G devices continuously monitor channel state information feedback from peer devices
to control their modulation and coding scheme [213].

In the next chapter, we discuss how BLE and other wireless technologies apply the above pa-
rameter adaptation techniques to optimize their communication performance.
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In this chapter, we summarize research related to the topics of this dissertation. First, we discuss
research on BLE in Section 3.1. Next, we show how other wireless technologies adapt commu-
nication parameters to optimize performance in Section 3.2. Finally, we list different approaches
used on the Internet to achieve reliable and time-critical data exchange in Section 3.3.

3.1 Research on BLE Communication

This section discusses the state-of-the-art research on BLE communication related to this thesis.
In every subsection, we highlight how the work of this dissertation differs from existing research.

3.1.1 Connection-less BLE Communication

Connection-less BLE communication has been the focus of many research studies. Based on these
works, we know how to design BLE-based indoor localization [73,110], locality-based authoriza-
tion [82], or group management [85].

Several models and experimental studies of connection-less BLE allow developers to improve
the BLE device discovery process. For example, the model presented by Liu et al. [135, 136]
shows the effects of the BLE connection-less parameters on the power consumption of BLE de-
vices during device discovery. Jeon et al. [106] show the trade-off between discovery latency and
energy consumption during device discovery for different connection-less BLE parameters. The
works of Kindt et al. [115, 117, 118] present accurate models of connection-less BLE communi-
cation and discuss how to optimize BLE device discovery and even provide an upper bound on
discovery latency. Due to the work of Cho et al. [47], we know that an increasing number of BLE
devices performing device discovery may lead to exponentially increasing discovery latencies.
Furthermore, the work of Julien et al. [107] shows how to find suitable connection-less BLE pa-
rameters for the device discovery process to minimize packet collisions. Devices may adapt their
BLE parameters based on the time of day to optimize device discovery latency while conserving
energy [175]. Moreover, BLE devices can make use of the extended advertising functionality in-
troduced in BLE version 5 to optimize device discovery [95] and can make use of the mechanism
proposed by Mikhaylov [146] to optimize the connection establishment process.

In addition to device discovery and connection setup, connection-less BLE communication is
also used to create mesh networks [53, 54, 98, 148, 149] and the Bluetooth SIG has even specified
how short packets can be transmitted over connection-less BLE in mesh networks [28]. More
recently, connection-less BLE communication has been successfully used for efficient concurrent
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transmissions in multi-hop networks [9, 16].

In contrast to the above research, this dissertation focuses on the connection-based BLE commu-
nication mode, as it supports reliable and bidirectional data exchange. Nevertheless, applications
using the work in this dissertation can also make use of the research work on connection-less BLE,
e.g., to speed up device discovery or locate individual BLE devices.

3.1.2 Communication Reliability of BLE Connections

Multiple research works have investigated how BLE connections are affected by co-located ra-
dio devices using the 2.4 GHz ISM band. These studies show that application data exchange
over a BLE connection sustains a reliability of 100%, even when interfered by co-located BLE,
IEEE 802.15.4, Classic Bluetooth, and Wi-Fi devices [38,143,193,220]. The reasons for this reli-
ability are BLE’s autonomous retransmission of unsuccessfully transmitted link-layer packets and
the Adaptive Frequency Hopping (AFH) mechanism of connection-based BLE. Every BLE link-
layer packet is eventually successfully received by the peer device, however, the communication
latency over a BLE connection experiencing external interference significantly increases [38,220].
Likewise, simulations of BLE’s AFH mechanism show that frequency hopping, even without
adaptive BLE channel management, improves BLE’s performance under radio interference [6–8].
Some studies even propose cooperative solutions in the time and frequency domains between co-
located wireless networks to improve the performance of BLE connections [42,154]. However, no
research has investigated how BLE devices can reduce the number of interfered link-layer packets
by applying an effective BLE channel management, i.e., adaptively blacklisting BLE data channels
with poor quality.

A few works study performance metrics, i.e., maximum data throughput, energy consumption,
and communication range, of the different BLE PHY modes analytically [33] or experimentally [9,
50,113,166]. Unfortunately, these studies either focus on the connection-less mode of BLE [9,50,
166, 177] or do not investigate all 4 available PHY modes [113]. Furthermore, none of the works
investigate the robustness of the different PHYs under external interference.

To the best of our knowledge, the work in this dissertation provides the first extensive experi-
mental study on BLE data channel management and adaptive PHY mode selection in connection-
based BLE. After experimentally investigating the BLE link-layer behavior under different con-
ditions in detail, we design an effective and efficient BLE channel management and a PHY mode
adaptation approach, which both cooperatively improve the BLE link-layer reliability while lim-
iting unnecessary power consumption. Our work on the BLE PHYs inspired further research on
this topic by Sheikh et al. [189].

3.1.3 Communication Latency over BLE Connections

The communication latency of Classic Bluetooth applications has been studied by several research
works [44, 173, 181]. For example, Chen et al. [44] use the Synchronous Connection Oriented
(SCO) links of Classic Bluetooth and adapt the Adaptive Retransmission Request (ARQ) timeout
to sustain an upper latency bound on transmissions. Likewise, Razavi et al. [173] adapt the ARQ
timeout of Classic Bluetooth’s SCO links to support basic video streaming. Sattar et al. [181] show
that the Bluetooth v2.1 Enhanced Data Rate mode and the Bluetooth v3 High Speed mode can be
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used to stream audio and video data by using sophisticated audio/video codecs. All these works
on Classic Bluetooth, however, only optimize for throughput or latency and completely neglect
any additional power consumption, making these approaches unsuitable for low power devices.
Furthermore, these studies only use Classic Bluetooth, which is completely different from BLE
(as stated in Section 2.1.1), and therefore cannot be reused for BLE communication.

As stated above, individual application data exchanges over a BLE connection may be delayed
due to external interference [38, 193]. Therefore, there exist a number of different approaches
to analytically model the communication latency of a BLE connection [68, 116, 179]. Although
these works account for link-layer packet loss during data transmission, they all require low-level
BLE link-layer information, such as bit error rate, number of cyclic redundancy check (CRC)
errors, or data transmission probability. These low-level metrics, however, are hidden in the BLE
controller and, therefore, cannot be used by adaptation mechanisms on the BLE host to estimate or
control the latency of data transmissions. Furthermore, these models only investigate the latency
of transmissions from the BLE slave to the BLE master. How a BLE slave can estimate and
control the latency when receiving packets from the BLE master is not investigated. Only the
work by Lee et al. [127, 128] uses proactive probing packets to capture link-layer packet loss on
the BLE host. However, the authors use their packet loss estimates to select the best of multiple
peer connections for data exchange [128] or adapt only the BLE connection interval, one of the
two BLE connection parameters, to keep the BLE connection alive under harsh conditions [127].
They do not use their models to sustain a given transmission latency over a BLE connection.

Some works investigate how the standard BLE link-layer behavior can be modified to support
real-time transmissions over a BLE connection. Marinoni et al. [144] create a custom real-time
protocol that shares the BLE radio with ordinary BLE communication. Rondon et al. [178] pro-
pose three novel link-layer retransmission schemes, which limit the maximum number of retrans-
mission attempts of certain link-layer packets, to improve the real-time capabilities of connection-
based BLE. Likewise, Agnoletto et al. [4] present a time-slot-based transmission scheme that
allows packet prioritization over BLE connections to support real-time communication. Unfortu-
nately, all these works require significant changes to the link-layer behavior of BLE devices and,
therefore, cannot be used by existing BLE devices. Furthermore, the works by Rondon et al. and
Agnoletto et al. only show their real-time capabilities in computer simulations [4, 178].

One major step towards real-time data exchange over BLE connections is the release of Blue-
tooth version 5.2, which specifies how BLE devices can support high-fidelity audio data exchange
over connection-based BLE [26]. With this new BLE version, BLE devices can make use of
isochronous (ISO) channels to exchange time-sensitive data with peer devices. These ISO chan-
nels are a complete redesign of the SCO links of Classic Bluetooth focussing on low energy con-
sumption as well as real-time communication capabilities. As of today, however, only a very
limited number of devices support BLE version 5.2 with its ISO channels and no study has inves-
tigated how these new BLE features can be used to sustain given latencies over BLE connections.

In contrast to the existing research, the work in this dissertation shows a novel BLE latency
model that captures the effect of both BLE connection parameters, the connection interval and the
slave latency, on the communication latency of traffic from and to a BLE device. Our model can
be used on off-the-shelf BLE devices to capture link-layer packet loss, as it uses only standard
information available on the BLE host. Furthermore, our end-to-end BLE model allows BLE
devices to capture loss and delay across multiple networks, i.e., the Internet, and can be used on
BLE devices to sustain given end-to-end latency and reliability bounds. As our work does not
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require any changes to the BLE controller, it has already been used for adaptive transmission
power control [162] and may be used by future BLE devices supporting BLE version 5.2 and
above to sustain time-critical application data exchange.

3.1.4 Energy Efficiency of Connection-based BLE

Several works have experimentally studied the power consumption of devices using connection-
based BLE communication. Gomez et al. [87] have measured the transmission delay and en-
ergy consumption for exchanging ATT packets with a length of 37 bytes over a BLE connec-
tion. Dementyev et al. [55] have investigated the energy consumption of BLE slave devices us-
ing connection-based BLE when periodically transmitting 8-byte data packets. Similarly, Siekki-
nen et al. [190] have studied the energy consumption of connection-less and connection-based
BLE communication. The latter two studies both experimentally show that connection-based BLE
communication is significantly more energy-efficient than the competing low-power wireless tech-
nologies ANT and IEEE 802.15.4.

A few works accurately model the energy consumption of BLE devices exchanging data over
BLE connections [118, 190]. Other work by Kindt et al. [116] proposes an adaptation mechanism
running on the BLE master to dynamically change the BLE connection interval depending on the
traffic load over the BLE connection to increase energy efficiency.

In this thesis, we investigate the energy efficiency of connection-based BLE when exchanging
IPv6 data. Therefore, we provide a detailed experimental comparison of IPv6 over BLE and IPv6
over IEEE 802.15.4 on the same hardware platform using a wide range of different IPv6 packet
lengths. We conclude that standard IPv6-over-BLE communication is significantly more energy-
efficient than IPv6 over IEEE 802.15.4 under comparable application traffic and show different
extensions to IPv6 over BLE that boost its performance even further. Furthermore, we provide
the first experimental evaluation of the different BLE PHY modes when used in connection-based
BLE and show how the used PHY mode can be adapted at runtime to optimize energy efficiency.

3.1.5 BLE-based IoT Applications

There exist a plethora of IoT applications that use connection-based BLE to exchange data with
cloud servers, such as smart city deployments [83], smart grid devices [49], and smart healthcare
applications [10,93,109,219]. These applications use BLE gateways, usually smartphones, to con-
vert GATT-based BLE packets into IP packets that can be exchanged over the Internet [200]. As
shown by Zachariah et al. [232], having dedicated gateway devices results in multiple architectural
problems, such as decreased usability, availability, security, privacy, and deployability.

To address these problems and create dependable IoT applications based on BLE, the research
community proposed IPv6-over-BLE communication, where BLE devices directly exchange IPv6
packets with any other IP-based device [156], as we summarize in Section 2.1.5. The potential
of IPv6 over BLE in smart home applications has been the focus of Chang et al. [43]. Similarly,
Nieminen et al. [155] discuss the performance of IPv6-over-BLE communication and show its
feasibility in a simple experimental campaign. Furthermore, Lee et al. [128] use connection-less
and connection-based BLE communication to create mesh networks exchanging IPv6 packets.

Nowadays, IPv6 over BLE is part of several operating systems for constrained nodes, such as
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Mynewt [12], the Nordic Semiconductor nRF5 SDK [158], and the Zephyr RTOS [217]. Un-
fortunately, the IPv6-over-BLE stack of these operating systems either only supports the node
role [12, 217], or does not allow full access to the BLE controller [158].

In this dissertation, we present the first fully open-source IPv6-over-BLE communication stack
that allows BLE devices to act as nodes and routers and allows full control over the BLE con-
troller. Our IPv6-over-BLE stack is officially part of the popular Contiki Operating System (OS)
and has been used to create IPv6-mesh over BLE networks [41]. Besides designing and imple-
menting plain IPv6-over-BLE support, we have also exposed the key parameters of IPv6-over-BLE
communication allowing optimization of the IPv6-based data exchange at runtime. Using these
exposed parameters, we have created multiple extensions to plain IPv6-over-BLE, most notably
adding support for different QoS levels over a single IPv6-over-BLE link.

3.1.6 Other Relevant BLE Research

Connection-based BLE has been used to create custom mesh network solutions, where multi-
ple BLE connections form multihop mesh networks [46, 129, 165, 234]. Some works have even
investigated how to schedule parallel BLE connections on individual devices to decrease the com-
munication latency across a mesh network [129, 165].

Hussain et al. [99] enable mobility of BLE slave devices, as they support seamless handover
of active BLE connections from one BLE master to another BLE master closer to the BLE slave.
Reich et al. [174] and Park et al. [163] focus on the scalability aspects of multiple parallel BLE
connections on a single BLE master. Their experimental evaluations show that the communication
reliability of individual BLE connections drops when the BLE master has to sustain multiple BLE
connections. By efficiently scheduling the individual BLE connections on the master, however,
the number of failed BLE transmissions can be significantly reduced [163].

Parts of our research may be used in all of these applications to improve their reliability, scal-
ability, and latency even further. For example, by combining our work with the work from Hus-
sain et al. [99], one could support highly scalable and mobile IPv6-over-BLE applications.

3.2 Adaptation Techniques in Wireless Technologies

In this section, we discuss state-of-the-art parameter adaptation techniques used by other wireless
technologies, such as other low-power radio technologies (Section 3.2.1), Wi-Fi communication
(Section 3.2.2), or cellular networks (Section 3.2.3).

3.2.1 Low-power Wireless Technologies

This sections summarizes related research on low-power radio technologies to improve their com-
munication reliability (Section 3.2.1.1) and to sustain time-critical data exchange (Section 3.2.1.2).
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3.2.1.1 Communication Reliability

One effective way to improve communication reliability in low-power wireless networks is to use
channel hopping. For example, channel hopping has been shown to mitigate the effects of external
interference and multipath fading on the communication performance of IEEE 802.15.4 [225,226].
One way to improve the communication reliability even further is to adapt the used communica-
tion channels to only use channels with good link quality for communication [225]. Accurately
estimating the link quality of a low-power channel (e.g., an IEEE 802.15.4 channel), however, is
challenging, as low-power wireless links are lossy and experience dynamic changes [15].

Some research works actively measure the noise floor of IEEE 802.15.4 channels to detect if
an individual channel is used by other co-located wireless devices [63, 74, 215]. By investigat-
ing the statistical properties (e.g., average, standard deviation, number of samples exceeding a
threshold) of noise floor measurements on an individual channel, external interference can be
detected and the affected channel can be excluded from further data exchange [74]. Other stud-
ies use PDR measurements to passively estimate the link quality of individual IEEE 802.15.4
links [70, 121, 122, 131, 188, 225], as PDR-based estimation approaches typically provide a
more accurate estimation than approaches solely based on RSSI, noise floor, or IEEE 802.15.4’s
LQI [120]. For example, the long-term average PDR can then be used to statically choose only
the best performing channels for data exchange [225]. Recent PDR measurements can be used
in combination with a fixed [70, 131] or an adaptive threshold [121] to detect and blacklist bad
channels. Furthermore, multiple link metrics may be combined to estimate the link quality of in-
dividual IEEE 802.15.4 channels [86,137,215]. For example, Gomes et al. [86] measure the RSSI
of received packets, the noise floor, and the number of duplicate packets to estimate the link quality
of IEEE 802.15.4 channels in industrial environments. Tavakoli et al. [215] use noise floor mea-
surements in combination with clear channel assessment (CCA) and the packet reception status to
sense if a channel is bad. Moreover, Liu et al. [137] use multiple link metrics in combination with
regression models to calculate the success probability of delivering the next packet on a channel.

Another approach to increase communication reliability of low-power wireless technologies,
which support different PHY configurations, is to choose a more robust PHY setting. For ex-
ample, LoRa devices make use of SNR values to calculate the average packet loss caused by
fading or interference [197, 231]. Recent SNR measurements can be used in combination with a
neural network to calculate the most suitable LoRA PHY transmission rate [231]. The average
SNR over recent packet exchanges may be used to adapt the LoRa PHY transmission rate and
power incrementally to sustain a given communication reliability while limiting unnecessary en-
ergy consumption [197]. Such a step-by-step adaptation of PHY parameters is also used in UWB
communication to achieve an energy-efficient and reliable data exchange [88]. Liang et al. [133]
even extend IEEE 802.15.4, which typically does not support different symbol coding schemes, in
the MAC layer by dynamically using redundant header transmissions and forward error correction
on the packet data to improve communication reliability in the presence of Wi-Fi interference.

In this dissertation, we investigate how both of these techniques, adaptive channel management
and PHY mode adaptation, can be used in connection-based BLE. First, we design an effective
channel management mechanism that only uses link-layer information available in standard BLE
radio devices. Hence, our mechanism can be used to talk to any standard-compliant BLE de-
vice, as it does not require any additional probing packet exchanges that would violate the BLE
specification. Our mechanism passively monitors the PDR of individual BLE data channels and
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promptly blacklists bad data channels with an average PDR below a given threshold to improve
communication reliability. Second, we design an effective PHY mode adaptation mechanism for
BLE that uses recent SNR values to dynamically choose the most suitable PHY setting of the BLE
connection. Third, we experimentally show that both of our adaptation mechanisms successfully
work in parallel to cooperatively improve the communication performance of a BLE connection
while limiting unnecessary energy consumption, as we show in Section 4.1.

3.2.1.2 Communication Latency

There exists a vast number of research works on low-power radio technologies investigating how to
sustain a reliable and time-critical data exchange while minimizing the power consumption of em-
bedded devices. For example, research on WirelessHART shows how adapting the task scheduling
on the IEEE 802.15.4 radio improves real-time capabilities [58,138] and can provide probabilistic
real-time guarantees [45]. Other research on IEEE 802.15.4 allows to sustain a given maximum
communication delay while minimizing the power consumption of devices in single- and multi-
hop networks [39, 75, 80, 102, 236, 237]. Unfortunately, most of these works rely on powerful
network coordinator devices that monitor the whole network state and centrally optimize the net-
work’s communication schedule. For example, Ma et al. [138] use link quality predictions on the
network coordinator in combination with nonlinear integer programming to optimize the central
transmission schedule of multi-loop control systems. Franchino et al. [80] use network calculus
on a central gateway to sustain a given QoS level and system lifetime. Zimmerling et al. [237]
optimize the performance of multi-hop networks by using a network-wide performance model in
combination with mixed-integer nonlinear programming. All of the works above, however, only
focus on sustaining latency and reliability bounds within the low-power network and cannot be
used to exchange data with a cloud server within given latency and reliability requirements.

Only some low-power radio studies have investigated communication across multiple networks.
Betzler et al. [21] design an adaptive retransmission timeout estimator for CoAP that can cope with
congestion in the IEEE 802.15.4 network. Nodes using their approach are able to increase data
throughput and reduce the time to process traffic bursts in a network compared to non-adaptive
CoAP. Kumar et al. [124] show how to fine-tune the behavior of TCP so that low-power nodes can
make use of TCP when talking to cloud servers to achieve efficient data exchange. Unfortunately,
these works do not investigate how low-power nodes can sustain a given end-to-end reliability and
latency when communicating with devices on the Internet.

In this thesis, we fill this research gap and show how individual BLE nodes can autonomously
adapt their parameters to exchange data with other devices within given end-to-end reliability
and latency bounds while minimizing their energy consumption. Our estimation and adaptation
approach runs directly on the BLE nodes and does not require any central network coordinator,
making our work fully compliant with the end-to-end principle of IP. Off-the-shelf BLE nodes can
make use of our work to sustain end-to-end dependability bounds when communicating with peer
devices in the local BLE network (e.g., a smartphone collecting data) or outside the BLE subnet
(e.g., a cloud server on the Internet), as we show in Chapter 6.
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3.2.2 Wi-Fi Technology

Wi-Fi, as specified by IEEE 802.11, is the most popular wireless Local Area Network (LAN)
technology and, like BLE, also uses the 2.4 GHz (in combination with other frequencies) ISM
band for data exchange. Compared to low-power wireless technologies, Wi-Fi devices have a
drastically higher data throughput and lower latency at the cost of a significantly higher power
consumption [81].

In Wi-Fi networks, one or multiple Wi-Fi clients talk to a central Wi-Fi access point (AP) using
a single Wi-Fi channel. Typically, Wi-Fi devices operate in environments, such as urban housing
or conference venues, where a vast number of different Wi-Fi APs share the same frequencies
and need to sustain high throughput and low latency. To optimize the performance of individual
Wi-Fi networks, co-located APs need to coordinate their individual channel selection to mitigate
interfering with each other. In settings, where APs are centrally managed, e.g., sports stadiums,
conferences, and public transport, centralized channel coordination provides the best achievable
data throughput [17]. In other situations where such centralized channel allocation is not possible,
e.g., in housing environments where every apartment has its own AP, Wi-Fi devices need to use
their own channel selection algorithm, e.g., based on noise floor measurements across all available
Wi-Fi channels, to select the least congested channel [139]. Furthermore, Wi-Fi devices use re-
cent noise floor and RSSI measurements to dynamically adapt their transmission power and CCA
thresholds to minimize interference amongst co-locates Wi-Fi networks [20, 114].

Since the release of IEEE 802.11ac, Wi-Fi devices make use of Dynamic Bandwidth Channel
Access (DBCA) to optimize their spectrum usage [20]. Using DBCA, Wi-Fi devices actively mea-
sure the noise floor of the used channel before every transmission and adapt the used packet rate
accordingly [125, 164]. For example, a Wi-Fi device may detect that only 40 MHz of bandwidth
on the used channel is currently unoccupied, i.e., has a noise floor level below the current CCA
threshold. In this case, the Wi-Fi device sends the next packet with a rate of only 40 MHz, filling
the current spectrum gap, although it may support a rate of up to 160 MHz.

To improve the spectrum usage of Wi-Fi even further, IEEE 802.11ax specifies that devices
make use of orthogonal frequency-division multiple access (OFDMA), a modulation technique
widely used in cellular networks [20, 56, 114]. OFDMA dynamically splits the available Wi-Fi
channel width into multiple narrow channels of variable width. These narrow channels are used
by the AP in combination with multiple AP antennas to communicate with different Wi-Fi clients
in parallel to increase overall throughput.

To summarize, state-of-the-art Wi-Fi devices use powerful modulation techniques in combina-
tion with channel management and rate adaptation to optimize their data throughput and com-
munication latency. Furthermore, Wi-Fi devices can change their PHY parameters (e.g., the used
transmission data rate) on a per-packet basis. Unlike Wi-Fi, connection-based BLE uses fixed-
width channels and requires that parameters are negotiated between two connected devices, which
introduces significant adaptation delays (see Section 2.1.4). The adaptation techniques of Wi-Fi
can, therefore, not be directly applied to connection-based BLE. However, we discuss that our BLE
channel management using passive PDR measurements provides a more reliable BLE connection
compared to a Wi-Fi-like approach using noise floor measurements, as we show in Chapter 4.
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3.2.3 Cellular Technologies

Another very popular approach to connect embedded devices to the Internet is using cellular tech-
nologies, especially 4G and the new 5G broadband cellular network standards. Compared to
low-power radio technologies, cellular devices need existing infrastructure (e.g., cellular towers)
to function, are not license-free, and have a significantly higher power consumption [5, 161].

In cellular networks, clients (i.e., smartphones) use the regulated frequency bands to commu-
nicate with base stations (i.e., cellular towers). Similar to modern Wi-Fi networks, 4G networks
make use of OFDMA to increase the spectrum efficiency of their networks [157]. 5G networks use
the even more advanced nonorthogonal multiple access (NOMA) approach to take full advantage
of the available frequency spectrum. Using NOMA, 5G devices split the available frequency band
into subchannels and use power-domain and code-domain multiplexing to allow multiple devices
to share the same subchannels for communication simultaneously [228].

As cellular networks operate on regulated frequencies, cellular devices usually do not have
problems with external radio interference by other co-located radio technologies. However, cel-
lular devices may experience co-channel interference at the boundaries of cellular cells [151].
Co-channel interference happens when a client is located between two cellular towers that share
the same frequencies. In this setting, the two towers may interfere with each other and the client is
not able to successfully receive data [223]. Such co-channel interference is one of the major issues
of large-scale 4G and 5G systems [151, 168]. One technique to mitigate co-channel interference
is to use effective centralized cell planning and selection if multiple frequencies are available. A
telecommunication provider may use multiple frequencies and centrally assign them to minimize
the chance of two nearby cells using the same frequency [223]. Other effective techniques to
mitigate co-channel interference are dynamically changing the used transmission power, adapting
the used modulation and coding scheme, coordinating packet transmission scheduling, and using
beamforming [19, 123].

Cellular devices can dynamically change their communication parameters at runtime to improve
communication performance. For example, 4G devices make use of the received signal strength
and analytical path loss models to dynamically choose a suitable transmission power [195]. 5G
devices may use SNR measurements in combination with sophisticated 3D-spatial channel models
to adapt the used transmission power [19]. 4G devices use complex channel information, consist-
ing of a channel quality indicator, a precoding matrix indicator, and a rank indicator, to adaptively
control the modulation and coding scheme on a per-channel and per-packet basis to improve com-
munication reliability and data throughput [123]. Likewise, 5G devices may use sophisticated
channel quality information passed through a low-pass infinite impulse response filter to estimate
link quality [168]. Cellular devices may use channel quality information in combination with an-
alytical models and complex numerical optimization techniques to adapt the PHY parameters of
upcoming packet transmissions [18]. Furthermore, 4G devices incrementally increase the used
error correction information of packet transmissions when packets are not successfully acknowl-
edged by the peer device [123].

Moreover, URLLC allows 5G devices to exchange small payloads with an end-to-end latency
below 1ms and a success probability above 99.999% [169]. Exemplary use cases of URLLC are
wireless industrial control and automation, safety-critical vehicle-to-vehicle communication, and
real-time tactile Internet services. To achieve low latencies, 5G devices adapt the flexible frame
structure of 5G packets and use advanced transmission scheduling policies. High reliability is
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achieved by using enhanced dynamic retransmission schemes and by having multiple antennas on
the transmitter and receiver to simultaneously send on different channels [132]. Furthermore, 5G
base stations cooperatively use data duplication and redundant packet exchanges to achieve the
goals of URLLC [187], even when sharing the same channel with other 5G traffic [168, 170].

Narrowband IoT (NB-IoT) is a fairly new cellular technology that focuses on connecting low-
power IoT devices wirelessly via the cellular network to the Internet. NB-IoT is an extension of
the existing LTE cellular standard, but optimizes aspects of its specification to support IoT devices
that may experience poor cellular coverage, infrequently exchange small packets, and do not have
a continuous power supply [145]. Due to these optimizations, NB-IoT devices that infrequently
transmit short data packets (e.g., 50 bytes every 2 hours) may run for several years on a single
battery charge [172]. The drawbacks of NB-IoT, however, are its maximum achievable data rate
of approximately 90 Kbits per second [141] and its highly variable communication delay, i.e.,
NB-IoT packets may experience delays of several minutes [145].

Overall, state-of-the-art cellular networks use sophisticated channel management and link adap-
tation approaches in combination with powerful base station antenna arrays and modulation
schemes. These techniques, together with licensed frequencies, allow an effective and efficient
use of the available frequency spectrum and lead to high data throughput and low transmission
latencies. In this dissertation, we show that BLE devices can use simple link quality estimation
techniques for effective channel management and PHY mode adaptation to sustain a given com-
munication reliability in the crowded 2.4 GHz ISM band. Our approach does not require multiple
BLE antennas, sophisticated channel models, or duplicate and redundant transmissions to multiple
BLE routers. Nevertheless, some of the above techniques, such as an adaptive error correction or
advanced transmission scheduling, may further improve the performance of BLE communication.

3.3 Time-critical and Reliable Internet Communication

Finally, we summarize research on reliable and time-critical Internet communication. Similar to
the sections above, we highlight the differences between our work and existing research.

3.3.1 Estimating Loss and Delay on the Internet

How devices can capture and mitigate loss and delay across the Internet path has been researched
in a large body of work. For example, the round trip time of TCP messages over wireless links
can be estimated using multiple nested Kalman filters [105]. Loss and delay of UDP traffic across
the Internet can be modeled in real-time using machine learning [180] or via two-level Markov
models [69]. Furthermore, Domain Name System (DNS) exchanges may be used to estimate loss
and delay between two hosts on the Internet [90, 224].

The work in this dissertation follows another approach and adapts the round-trip time (RTT)
estimation of TCP proposed by Jacobson [103, 167] to the particular requirements of low-power
wireless communication. In Chapter 6, we show that our simple approach using infrequent RTT
measurements is able to efficiently and accurately estimate the maximum end-to-end loss and
delay across the Internet. Our simple estimation approach is very energy-efficient and requires
only little processing and memory resource, making it applicable to almost any constrained device.
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3.3.2 Quality of Service (QoS)

Typically, IP networks provide best-effort data exchange, where no packets are prioritized over
others. To allow for differential treatment of time-critical IP packets, Internet Protocol version
4 (IPv4) and IPv6 foresee different QoS mechanisms that allow for packet prioritization [214].
The two most popular QoS approaches in IP networks are Integrated Services (IntServ) and Dif-
ferentiated Services (DiffServ) [140]. Using IntServ, a sender uses signaling packets to reserve
and maintain network resources, e.g., a given data rate or latency, on a per-flow basis across the
whole network path to the receiver. However, IntServ has scalability issues, as it requires all
routers to understand its signaling packets and maintain the state of every QoS flow, and is there-
fore seldomly used for traffic across the Internet [78]. DiffServ, in contrast, requires no specific
end-to-end connection between sender and receiver but defines a QoS class in the header of every
IP packet. The QoS class is mapped to specific per-hop behaviors on the individual link layer
technologies, such as different packet transmission priorities in Wi-Fi [56, 153], to achieve the
desired QoS [140]. This makes DiffServ scalable, flexible, and interoperable, but also means that
it cannot guarantee a specific end-to-end QoS across the Internet.

More recently, Software-Defined Networking (SDN) is used in IP networks to sustain specific
QoS requirements. With SDN, the network’s control and data planes are decoupled and the net-
work state and intelligence are centrally bundled and controlled to dynamically optimize the net-
work performance [111]. Therefore, networks may use SDN to provide end-to-end QoS in small
and large-scale networks [89, 176]. To use SDN, however, one needs to have control over all
routers in a network, making SDN not feasible for sustaining QoS over the Internet.

In this dissertation, we show how a BLE link layer can achieve different QoS levels when
exchanging IPv6 packets with devices on the Internet. Furthermore, our work on sustaining end-
to-end loss and delay is very flexible, as it does not rely on any specific QoS mechanism of IPv6.
Using a specific QoS mechanism in combination with the work in this thesis will improve com-
munication performance even further.

3.3.3 Real-time Protocols

Sustaining real-time communication is important for many popular applications on the Internet,
such as audio and video streaming. Therefore, there exists an abundance of different protocols that
allow a reliable and timely transfer of data over the Internet. For example, application protocols,
such as Real-Time Transport Protocol (RTP), are successfully used to stream audio and video
over the Internet [182, 221]. Advanced transport protocols, such as Sprout [227], Verus [233],
and PCC [60] reduce network congestion and allow high data rates and low latency in wired
and cellular links [229]. More recently, the real-time protocols Time Sensitive Network (TSN)
and Deterministic Networking (DetNet) have been released to achieve a deterministic end-to-end
latency in best-effort IP networks [230]. The TSN standards solely focus on extending link layer
technologies, such as Ethernet, by advanced flow synchronization, management, and control to
create reliable and low-latency communication [153]. The DetNet standards build on top of TSN
and define how the network layer can effectively route packets to achieve a reliable data exchange
with a deterministic latency [57].

These protocols are able to sustain real-time data exchange across the Internet, but require pow-
erful processing capabilities on every end point [182, 221, 227]. Some of these approaches even
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require changing the behavior of intermediate routers [57, 153]. This makes these protocols not
suitable for low-power and resource-constrained embedded nodes, such as BLE devices. There-
fore, in this dissertation, we focus on how constrained devices can sustain end-to-end requirements
while operating on a limited energy budget.

3.3.4 Tactile Internet

Recently, research on the Tactile Internet focuses on sustaining minimal end-to-end latency and
maximum reliability on the Internet [77]. These works mostly use 5G and URLLC to reliably reach
round trip latencies below 1 ms to enable tactile and visual feedback control across the Internet. In
addition to the innovations in the 5G link layer, Tactile Internet applications also require changes to
other communication layers and the employed infrastructure to sustain the given requirements. For
example, Tactile Internet applications require new transport and application protocols, in combina-
tion with novel QoS approaches, to achieve low communication latency [108]. The core network
of such applications further needs to be adapted to reduce the protocol overhead of individual
packets and to support moving the used cloud server physically near to the application [14, 196].
Furthermore, sophisticated data reduction and compression algorithms in combination with AI-
based content caching improve communication performance while optimizing the required data
rate [196].

Contrary to these works, the work in this dissertation focuses on sustaining less stringent end-
to-end dependability requirements on resource-constrained nodes, while minimizing the power
consumption of the constrained node devices.
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4
Improving the Performance of BLE

Connections

In this chapter, we answer our first research question (RQ 1) and show how the parameters of
connection-based BLE can be dynamically adapted to optimize communication performance. In
Section 4.1, we discuss how to improve the link-layer reliability of connection-based BLE with an
effective BLE channel management and PHY mode adaptation. In Section 4.2, we present how
off-the-shelf BLE devices can estimate and control the communication latency of individual data
transmissions. This chapter is based on the Publications B, C, and D included in this dissertation.

4.1 Increasing the Reliability of BLE Connections

In this section, we focus on increasing the link-layer reliability of a BLE connection while min-
imizing the power consumption of the BLE slave. To improve the link-layer reliability, the BLE
specification foresees two different approaches: channel management and PHY mode adaptation.
In this dissertation, we focus on implementing these two approaches on off-the-shelf BLE devices.

4.1.1 Experimental Study of BLE Link-Layer Reliability

This section summarizes the results of our extensive experimental study of the reliability of the
BLE link-layer under different conditions. In our work, we estimate the link quality of individ-
ual BLE data channels on the BLE master, which has several advantages over measuring the link
quality on the BLE slave. First, the master is usually less power-constrained and could afford
to actively exchange probing packets. Second, other than the BLE slave, the master receives ac-
knowledgments to link-layer packets within the same connection event (see Section 2.1.4). Third,
for all BLE devices supporting BLE version 5.2 and below only the master can adapt the used data
channel map Cmap of a BLE connection4.

4.1.1.1 BLE Link Quality Metrics

In our experimental study, we focus on link quality metrics that are available on standard BLE
radios allowing link-layer access and we only make use of passive link monitoring (as described

4 The most recent BLE specification version 5.3 [27] released in July 2021 also allows BLE slave devices to adapt
the data channel map of a BLE connection. Because this feature is not yet supported by existing BLE devices, this
thesis only shows how a BLE master device can perform effective BLE channel management.
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in Section 2.2.2), i.e., we investigate only link-layer information that is available through exist-
ing BLE link-layer packets. Introducing additional active probing packets is not suitable for our
approach, as this would violate the BLE specification [26] and would break interoperability with
other off-the-shelf BLE devices. Based on these constraints, we consider the following metrics:

Noise floor. We measure the noise floor of a specific BLE data channel by reading the RSSI when
the radio does not exchange packets. The noise floor provides us with an indication if the data
channel is also used by other nearby wireless technologies, such as Wi-Fi.

Signal-to-noise ratio (SNR). We measure the SNR of every successfully-received link-layer
packet, by reading a packet’s RSSI and subtracting the current noise floor on the used data channel.
This metric provides us with information on the packet signal strength on individual data channels.

Packet delivery ratio (PDR). We further measure the PDR of every link-layer packet exchange.
Therefore, we adapt the work in [94] to be used in BLE connections. Because we are unable to
arbitrarily probe individual channels in connection-based BLE, we use existing link-layer header
fields to calculate the PDR of link-layer exchanges. The PDR measures the round-trip reliability
of individual link-layer transmissions issued by a master and is computed as:

PDR =
#ACK(S →M)

#TX(M → S)
, (4.1)

where #TX(M → S) is the number of issued link-layer transmissions from master to slave and
#ACK(S → M) is the number of received valid link-layer acknowledgments from the slave.
Every link-layer transmission is either successful (PDR = 100%) or unsuccessful (PDR = 0%).

4.1.1.2 Measuring BLE Link Quality

We experimentally study the above link quality metrics in multiple scenarios to investigate the
link-quality information that each metric can provide. We perform our study in a wireless testbed
located in a university laboratory, where we have full control over the RF environment. For the ex-
periments, we use one Nordic Semiconductor nRF52 device [159] running the Zephyr RTOS [217]
as BLE master and connect it to another nRF52 device running the Zephyr RTOS acting as BLE
slave. The slave periodically sends GATT notifications with a length of 27 bytes to the master
using a BLE connection interval of 50 ms and a BLE slave latency of 0. In these experiments,
master and slave have a free line of sight and are approximately 10 m apart. The master measures
and logs the PDR and SNR of every link-layer exchange as well as the noise floor of every BLE
data channel after every connection event. Furthermore, the master uses the 1M BLE PHY mode
and does not make use of channel blacklisting, which is the default behavior of Zephyr running on
an nRF52 device. A detailed description of our experimental setup can be found in Publication D.

The subfigures in Figure 4.1 show the behavior of the BLE link quality metrics under changing
antenna attenuation, Classic Bluetooth interference, and Wi-Fi interference. The noise floor shown
in Figure 4.1 is the maximum noise floor value recorded on each channel within every second.
Similarly, the SNR plots show the average SNR value within a second on every channel. However,
when the master does not successfully receive a link-layer acknowledgment from the slave, the
SNR of this packet exchange is discarded (marked in brown). In addition to the SNR values on
each channel, we also calculate the average SNR (Avg. SNR) across all used BLE channels within
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a second. The PDR values shown in Figure 4.1 show the average PDR within a second per channel.
Following the approach by Srinivasan et al. [210], we classify channels with a PDR below 10%
as bad, channels with a PDR between 10% and 90% as intermediate, and channels with a PDR of
90% or above as good. Whenever a data channel is not used within a second, its SNR and PDR
are marked in white in Figure 4.1.

Changing antenna attenuation. First, we measure how the link quality of the BLE data channels
is affected when the radio signal is attenuated, e.g., due to obstacles blocking the line of sight
or an increasing communication distance. To mimic changing signal attenuation, we use a pro-
grammable attenuator [147] connected to the slave’s antenna that allows fine-grained control over
the antenna attenuation on the slave. Figure 4.1(a) shows the measured noise floor, the average
SNR across all used data channels, the SNR per data channel, and the PDR per data channel under
gradually changing antenna attenuation. The antenna attenuation on the slave starts at 0 dB and,
between the time of 0 to 30 seconds, linearly increases to 10 dB. The antenna attenuation stays at
10 dB for 120 seconds and then linearly goes back to 0 dB. This change in attenuation can clearly
be seen in the average SNR and the PDR of some data channels in Figure 4.1(a).

Figure 4.1(a) shows that noise floor measurements are not able to detect link-layer problems
due to a weak signal strength. The average and individual SNR values detect the changing signal
strength and individually unsuccessful packet exchanges but do not detect when a valid link-layer
packet was received, but its checksum is wrong. Only the PDR is successfully able to capture all
link-layer packet loss caused by weak signal strength.

Classic Bluetooth interference. Next, we measure the link quality of BLE data channels under
co-located Classic Bluetooth interference, which also uses the 2.4 GHz ISM band and employs
frequency hopping. To generate Bluetooth interference, we use two pairs of Raspberry Pi 3B (Pi3)
devices in our wireless testbed and let each Pi3 pair exchange Bluetooth RFCOMM packets at a
data rate of approximately 725 kbps. As shown in Figure 4.1(b), we start the Bluetooth interference
30 seconds after the beginning of our experiment and interfere for roughly 120 seconds. In this
experiment, we use a fixed antenna attenuation of 0 dB.

Figure 4.1(b) shows that the noise floor measurements barely detect the external interference.
The average and individual SNR measurements are able to detect the Bluetooth interference, but
may underestimate the link quality, as several SNR values of successful packet exchanges are very
low (SNR < 5dBm). As in the previous scenario, only the PDR is able to accurately capture
link-layer packet loss caused by co-located Classic Bluetooth communication.

Wi-Fi interference. We measure the link quality of BLE data channels under Wi-Fi interfer-
ence. To generate Wi-Fi interference, we run JamLab-NG [185] on one of the Pi3s in our wire-
less testbed, which is located near the BLE slave. We generate Wi-Fi packets with a length of
1500 bytes on Wi-Fi channel 11 every 10 ms and use a transmission power of 30 mW. Like in
the previous scenario, we use a constant antenna attenuation of 0 dB and start the interference
30 seconds after the beginning of the experiment and interfere for approximately 120 seconds.

Figure 4.1(c) shows that the Wi-Fi interference significantly decreases the link-layer reliability
of the BLE connection. In this case, the noise floor measurements are able to detect the Wi-Fi
interference. Similar to Classic Bluetooth interference, the SNR measurements detect unsuccess-
fully received link-layer packets, but do not detect packets with an invalid checksum. Again, only
PDR measurements accurately detect all link-layer errors caused by Wi-Fi interference.

– 39 –



Enabling Time-Critical Internet of Things Applications Based on Bluetooth Low Energy

0
10
20
30

Da
ta

Ch
an

ne
l

Att.:
0 to 10 dB

Att.:
10 dB

Att.:
10 to 0 dB

Att.:
0 dB

010203040

Av
g.

 S
NR

[d
Bm

]

0
10
20
30

Da
ta

Ch
an

ne
l

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210
Time [s]

0
10
20
30

Da
ta

Ch
an

ne
l

-105

-95

-85

No
ise

 F
lo

or
 [d

Bm
]

0

20

40

SN
R 

[d
Bm

]

010

90100

PD
R 

[%
]

(a) Gradually changing antenna attenuation.
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(b) Classic Bluetooth interference on two co-located Bluetooth connections.
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(c) Wi-Fi interference on Wi-Fi channel 11 near the BLE slave.

Figure 4.1: Link quality of a BLE connection under three different conditions. From top to bottom, the figures
show the noise floor per channel, the average SNR across all used channels, the SNR per channel, and
the PDR per channel. Adapted from Publication D.
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(a) 2M PHY Mode.
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(b) 1M PHY Mode.
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(c) Coded PHY (S2) Mode.
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(d) Coded PHY (S8) Mode.

Figure 4.2: Average PDR and SNR of all data channels using different PHYs and an antenna attenuation of 10
dB. We see that the used PHY mode of the BLE connection significantly affects the overall link-layer
reliability in this scenario. Adapted from Publication D.
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(a) 2M PHY Mode.
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(b) 1M PHY Mode.
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(c) Coded PHY (S2) Mode.
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(d) Coded PHY (S8) Mode.

Figure 4.3: Average PDR and SNR of all data channels using different PHYs under Wi-Fi interference on Wi-Fi
channel 11. We see that the used PHY mode of the BLE connection does not significantly affect the
overall link-layer reliability in this scenario. Adapted from Publication D.
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4.1.1.3 Using Different PHY Modes

After evaluating how individual BLE data channels are affected by different scenarios, we in-
vestigate how the used PHY mode, which defines the modulation and coding parameter of BLE
communication (see Section 2.2.1), affects the reliability of connection-based BLE. Therefore, we
repeat the experiments above with all four PHY modes of BLE 5 and evaluate their performance.

Antenna attenuation. Figure 4.2 shows the average PDR and average SNR of each BLE data
channel for the four different PHY modes, while experiencing an antenna attenuation of 10 dB.
Channels with an average PDR below 90% are classified as bad (shown in red) and channels with
an average PDR of 90% or above are classified as good (shown in yellow). If the BLE connection
experiences a weak signal strength, the used PHY mode has a significant effect on the overall link-
layer reliability. Because the Coded S2 and S8 PHYs make use of FEC and symbol coding, they
are able to sustain a high PDR under weak signal strength, even for channels with a low average
SNR. For example, all 37 BLE data channels have a good link quality when using the most robust
Coded S8 PHY compared to only 15 good channels when using the 2M PHY mode. The data in
Figure 4.2 suggest that switching to a more robust PHY mode significantly increases link-layer
reliability when experiencing a low signal strength.

Radio interference. Figure 4.3 shows the average PDR and average SNR of each BLE data
channel when Wi-Fi interference is generated near the BLE slave. Unlike the previous experiment,
the PHY mode used by the BLE connection does not significantly improve the link-layer reliability
under external interference. All four PHY modes experience similar link quality problems on the
data channels that overlap with the Wi-Fi interference. The 2M PHY provides an average PDR
of 83%, while the most robust Coded S8 PHY provides an average PDR of 86% across the whole
BLE connection. Switching from the least robust to the most robust PHY would only provide the
BLE connection with a 3% improvement on its average PDR.

4.1.1.4 Lessons Learned

Based on our experimental results, we draw the following conclusions that inform the design of
our BLE channel management and BLE PHY mode adaptation. To the best of our knowledge, our
experimental study is the first investigating the performance of different BLE link quality metrics
in real-world scenarios.

Noise floor. As expected, noise floor measurements on BLE channels are able to successfully
detect link-layer loss caused by external interference, e.g., caused by Classic Bluetooth or Wi-Fi.
Nevertheless, noise floor measurements are not able to detect link-layer loss caused by weak signal
strength, e.g., due to a large communication distance or low transmission power, or fading effects.

Signal-to-noise ratio (SNR). Individual SNR values detect loss on BLE channels when a link-
layer packet has not been successfully received, however, the SNR does not detect link problems
indicated by invalid checksums of successfully received packets. Moreover, individual SNR values
are not a good link quality indicator, as successful link-layer exchanges may have a low SNR value.

As discussed in Section 4.1.1.2, whenever the BLE master does not successfully receive a link-
layer acknowledgment, the SNR value of this link-layer packet exchange is discarded. The average
SNR of recent data exchanges across all used BLE channels, therefore, only includes the SNR
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values of successful link-layer exchanges. This average SNR accurately measures the BLE signal
strength and may be used to detect link-layer problems caused by a weak BLE signal and is a
suitable metric for detecting when the used PHY mode needs to be adapted.

Packet delivery ratio. The PDR values are accurately able to detect any link-layer packet loss
across all of our experimental scenarios. This makes the PDR the most suitable metric to detect
poor data channels to blacklist them.

Next, we show how to improve the BLE link-layer reliability by using these lessons.

4.1.2 Channel Management

In this section, we present our effective BLE channel management mechanism that is fully com-
pliant to the BLE specification and significantly improves the link-layer reliability of BLE con-
nections, as we show in Section 4.2.4. Using the findings from Section 4.1.1.4, our channel man-
agement passively monitors the PDR of individual BLE data channels by observing ongoing data
exchanges between the BLE peer devices. Based on recent PDR measurements, every BLE data
channel is classified into either good or bad (see Section 4.1.2.1). Whenever a channel is classi-
fied as bad, our channel management immediately blacklists the channel to exclude it from further
communication (see Section 4.1.2.2). In case a large portion of BLE data channels has been black-
listed, we whitelist (re-enable) all available data channels to probe their link quality using ordinary
data exchanges and get a fresh number of good channels (see Section 4.1.2.3).

Our simple and effective channel management mechanism can be adapted to other wireless
technologies that provide PDR measurements of individual data exchanges. With our channel
management, devices can passively, i.e., without additional energy consumption, monitor the used
data channels to promptly detect bad channels. As our channel management mechanism only
relies on PDR measurements, it successfully works in parallel to other communication parameter
adaptation mechanisms, as we discuss in Section 4.1.1.4 and experimentally show in Section 4.2.4.

4.1.2.1 Detecting Bad Channels at Runtime

First, we need to find the most effective approach to detect bad BLE data channels at runtime.
In our work, we focus on a simple rule-based channel classification approach (see Section 2.2.4),
where we mark an individual channel as bad whenever its link quality drops below a fixed thresh-
old. Such rule-based approaches are common in other wireless technologies because they require
very few memory and computing resources while being very effective. In contrast to other work,
however, we investigate which individual link-layer metric or combination of metrics provide the
best channel classification, which we discuss in detail in Publication D.

We reuse the experimental traces from Section 4.1.1 to find the most suitable channel classifica-
tion approach. For every experimental scenario, we simulate the performance of different channel
classification approaches, based on one or multiple BLE link quality metrics, and calculate the
resulting overall PDR (PDRconn) and the number of active channels (Cactive) at the end of each
experiment. We step through every measured trace to calculate the overall PDR of the BLE con-
nection as the average of the individual PDR measurements. Simultaneously, we simulate the
behavior of different channel classification approaches. Whenever the current classification ap-
proach detects that a channel is bad, we mark this channel as blacklisted and do not include any
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subsequent link-layer exchanges into our overall PDR calculation.

To find the most suitable channel classification approach, we test six different classification ap-
proaches in three different scenarios. We start by evaluating three classification approaches that
use individual PDR measurements of packet transmissions and blacklist a channel if the channel’s
average PDR drops below a given threshold. Based on our data, we see that blacklisting a BLE
channel when its average PDR across the 20 most recent packet exchanges drops below 95% pro-
vides the best trade-off between PDRconn and Cactive. In addition to the first PDR-based classi-
fication approaches, we also evaluate if additional noise floor or SNR information about a channel
improves channel classification. However, our simulations show that blacklisting a channel when
its average PDR drops below 95% is the most suitable BLE channel classification approach across
all three scenarios and that additional information does not improve channel classification.

4.1.2.2 Blacklisting Data Channels

In our approach, the BLE master immediately updates the used BLE channel map (Cmap) of the
BLE connection by issuing a LL CHANNEL MAP IND request to the slave when a bad channel
is detected (see Section 2.1.4). The new Cmap defines if a channel is active, i.e., will be used
for further connection events or is blacklisted, i.e., won’t be used for any upcoming connection
events until being re-enabled again. Updating the Cmap of a BLE connection, however, requires a
mandatory delay of at least six connection events (as discussed in Section 2.1.4), which means that
a blacklisted channel may be used in another connection event before the new Cmap takes effect.
If a recent Cmap update is still pending, i.e., has not been acknowledged by the slave, the master
waits for the update to finish and then immediately issues a new Cmap update.

Whenever a channel is blacklisted, it won’t be used for packet exchanges, which means that
we are not able to further estimate its link quality following our approach. Hence, any existing
information of a blacklisted channel is immediately cleared, as it may have already expired. Only
when a channel is whitelisted again, we collect fresh information to estimate its quality.

4.1.2.3 Whitelisting Data channels

As our channel management uses passive link monitoring to classify BLE data channels into good
and bad, we do not get valid link quality information of channels that have been blacklisted (as dis-
cussed in Section 2.2.2.1). This means that we cannot detect if a previously blacklisted channel has
improved in link quality and can be whitelisted again. Using additional probing packets to mea-
sure the link quality of blacklisted channels is infeasible, as it breaks interoperability with other
BLE devices. Whitelisting data channels after some timeout is also not practical, as the timeout
significantly depends on the current RF environment. Therefore, we follow a rule-based approach
with a fixed threshold (as discussed in Section 2.2.4) to whitelist all available BLE data channels.
This approach allows us to always have a diverse set of data channels for communication, while
still requiring only passive link measurements.

In our approach, we trigger a full whitelisting process whenever the number of active BLE
channels of a BLE connection drops below the threshold Cmin. Whenever the BLE master detects
that the number of active BLE channels drops below Cmin, the master runs through the following
whitelisting process. First, the master temporarily changes the BLE connection interval to a faster

– 44 –



4 Improving the Performance of BLE Connections

setting to allow faster channel probing and to avoid significantly impacting the latency of appli-
cation traffic. Second, the master re-enables all 37 BLE data channels and probes their individual
average PDR using regular BLE connection events. This probing phase lasts for tprobe, in which
every data channel is probed approximately Schannel times. After probing, the master calculates
the average PDR of each channel, blacklists any channels with poor quality, and reverts to the
original BLE connection interval. At the end of the whitelisting process, the BLE connection has
a new channel map with only good channels enabled.

4.1.3 PHY Mode Adaptation

Our BLE PHY mode adaptation mechanism presented in this section allows BLE devices to sus-
tain a specified link-layer reliability while minimizing their power consumption. Based on our
experimental results in Section 4.1.1, our PHY mode adaptation mechanism passively monitors
the SNR values of recent packet exchanges and uses a rule-based adaptation mechanism to find
the most suitable PHY mode. Using the SNR for PHY mode adaptation has multiple benefits.
First, the average SNR across all used BLE data channels accurately measures the BLE signal
strength of the BLE connection. Second, the average SNR (which includes only individual SNR
values from successful link-layer exchanges, as discussed in Section 4.1.1.4) is not significantly
affected by external interference, which means that our PHY mode adaptation is independent of
our BLE channel management presented above. BLE devices can, therefore, use only one of these
two mechanisms or can use both mechanisms in parallel to cooperatively improve the link-layer
reliability of connection-based BLE.

Other wireless technologies may use our PHY mode adaptation mechanism to sustain a given
link-layer reliability while minimizing energy consumption. Especially wireless technologies that
are able to adapt multiple communication parameters (see Section 2.2.1) may use our PHY mode
adaptation, as it does not interfere with other adaptation approaches.

4.1.3.1 Filtering SNR Measurements

To predict the SNR of future link-layer packet exchanges, we make use of a moving average
filter (as discussed in Section 2.2.2.2) on recent SNR values on all used BLE data channels of the
BLE connection. We reuse the experimental setup from Section 4.1.1 and record the link-layer
reliability of the different PHY modes for two different antenna attenuation settings. We step
through the recorded data to evaluate which window length (WSNR) provides the best predictions
of the average SNR of future link-layer exchanges. Our data suggest that a WSNR = 25 provides
the most accurate predictions of the SNR of upcoming 100 link-layer packets.

4.1.3.2 Choosing the Most Suitable PHY

Based on the filtered SNR measurements, a BLE device can select the most suitable PHY mode.
Our approach selects the most energy-efficient PHY mode that allows to sustain a given link-layer
reliability (PDRmin). We reuse the data from Section 4.1.3.1 to find the relationship between the
average measured SNR and the PDR of a BLE connection, shown in Figure 4.4. Note that we only
investigate three different PHY modes in our evaluation, because the symbol coding of the Coded
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Figure 4.4: Relationship between average PDR and the average SNR of a BLE connection for different BLE PHY
modes. Adapted from Publication D.

PHY (either S2 or S8) is statically decided by a BLE device and cannot be changed at runtime. To
support the highest possible reliability, we statically choose the Coded S8 PHY for our devices.

Figure 4.4 shows that the Coded S8 PHY, indeed, sustains the highest PDR for any given average
SNR. This increased reliability comes with the cost of significantly higher power consumption
caused by longer radio times. A slave using the Coded S8 PHY consumes on average 581.79µA,
while a slave in the same conditions but using the 1M or the 2M PHY consumes 407.93µA and
397.07µA, respectively. When combining our current measurements with the data in Figure 4.4,
we can see that the 2M PHY has a significantly lower link-layer reliability, but only a slightly
higher current consumption, compared to the 1M PHY mode. Hence, we argue that the 2M PHY
should not be used to sustain a given PDRmin, when data throughput is not an issue. Therefore,
our BLE PHY mode adaptation only makes use of the Coded S8 PHY when the conditions are
harsh and otherwise uses the 1M PHY for communication.

4.1.3.3 Adapting the PHY Mode

Our approach uses rule-based adaptation (as discussed in Section 2.2.4) to find the most suit-
able PHY mode of the BLE connection. Based on the data in Figure 4.4 and the user-specified
PDRmin, our PHY mode adaptation selects a SNR threshold (SNRPHY ) for PHY mode adapta-
tion. Whenever the average SNR of a BLE connection is greater or equal to SNRPHY , our PHY
mode adaptation mechanism chooses the 1M PHY for communication to conserve energy. If the
average SNR drops below SNRPHY , our PHY mode adaptation switches to the Coded S8 PHY
to sustain the required link-layer reliability PDRmin. To initiate a PHY mode switch, the BLE
master sends a link-layer PHY update request (LL PHY UPDATE IND) to the slave, as discussed
in Section 2.1.4.

One potential problem of rule-based parameter adaptation is oscillation, as we discuss in Sec-
tion 2.2.4. For example, if a device operates at an average SNR close to the SNRPHY , it may
continuously switch between the two available PHY modes. To combat such oscillation behav-
ior, we use a hysteresis and switch to the Coded S8 PHY whenever the average SNR drops below
SNRPHY , but we only switch to the 1M PHY when the average SNR≥ SNRPHY +SNRoffset.
Our experiments show that even an offset of SNRoffset = 1dBm successfully mitigates such un-
wanted switching behavior.
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4.1.4 Evaluation

In this section, we evaluate the performance of our two proposed adaptation mechanisms: our BLE
channel management and our PHY mode adaptation. Our BLE channel management (described in
Section 4.1.2) mitigates the effects of external interference and fading on a BLE connection by pas-
sively monitoring the quality of individual BLE data channels and adaptively selecting only good
channels for communication at runtime. Our PHY mode adaptation (described in Section 4.1.3)
works in parallel to our BLE channel management and mitigates the effects of a weak signal
strength by dynamically adapting the used BLY PHY mode to reach a specified link-layer reliabil-
ity while minimizing power consumption. To show that our proposed mechanisms do not depend
on any specific hardware, we implement our solution on two popular BLE platforms: the Nordic
Semiconductor nRF52 and the Raspberry Pi 3B (Pi3).

Nordic Semiconductor nRF52. On the nRF52, we use the Zephyr RTOS [217], which provides
a fully standard-compliant BLE communication stack that allows link-layer access and supports
all BLE PHY modes, to implement our channel management and our PHY mode adaptation.
Per default, an nRF52 device running the Zephyr RTOS does not make use of any BLE channel
management or PHY mode adaptation. In our evaluation, we use the nRF52840 chip to study
our approaches, however, our code runs on all chips that are part of the nRF52 series.

Raspberry Pi 3B (Pi3). On the Pi3, we run Raspbian and the tool InternalBlue [142] to im-
plement the BLE channel management on the onboard Broadcom BCM43430A1 radio chip of
the Pi3. The Broadcom radio on the Pi3 already makes use of basic autonomous BLE channel
management. Our BLE channel management, therefore, runs in parallel to Broadcom’s existing
channel management and extends its performance. The BLE radio of the Pi3 only supports the
1M PHY and the BLE channel selection algorithm #1 (CSA #1).

We experimentally study the performance of our two approaches in our wireless testbed (as
described in Section 4.1.1 and in detail in Publication D). We measure the slave’s average current
draw (ISlave) using our D-Cube testbed facility [183]. Furthermore, we measure the overall link-
layer reliability (PDR) of the BLE connection by parsing the link-layer logs recorded on the BLE
master device. Following the methodology described in Section 4.1.1, we study our approaches
under external interference and under changing antenna attenuation. In all experimental runs,
we start with an antenna attenuation of 0 dBm and without any external interference and either
gradually change the antenna attenuation or introduce external interference.

4.1.4.1 BLE Channel Management

First, we evaluate our proposed BLE channel management in three different experimental scenar-
ios. During these experiments, we disable our PHY mode adaptation and fix the used PHY mode
to the 1M PHY. Figure 4.5 shows the average PDR and ISlave for five different BLE channel
management approaches in three different scenarios. The default behavior of the nRF52 and the
Pi3 is shown as Default nRF52 and Default Pi3, respectively. The performance of our BLE chan-
nel management on the nRF52 is shown as Blackl. nRF52 (CSA #1) and Blackl. nRF52 (CSA #2),
where CSA indicates which BLE channel selection algorithm was used. The bar named Blackl.
Pi3 shows the performance of our channel management on the Pi3.

The data in Figure 4.5 show that our proposed BLE channel management significantly improves
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Figure 4.5: Link-layer reliability (PDR) and average current consumption of the slave (ISlave) for different
blacklisting mechanisms in three scenarios. The connection was either using the BLE channel selec-
tion algorithm #1 (CSA #1) or CSA #2. Adapted from Publication D.

the link-layer reliability (PDR) of a BLE connection without increasing the power consumption
on the BLE slave (ISlave). We further see that our channel management improves the link-layer
reliability by up to +22% on the nRF52 and +10% on the Pi3 compared to the default behavior
of the platforms. Furthermore, the data indicate that the used CSA does not significantly affect
the link-layer reliability of a BLE connection. Overall, our BLE channel management is able to
sustain a PDR above 99% in all three experimental scenarios.

4.1.4.2 BLE PHY mode adaptation

Next, we evaluate the link-layer performance of a BLE connection when our BLE channel man-
agement and our PHY mode adaptation cooperatively improve link-layer reliability. Therefore,
we re-run the experiments from Section 4.1.4.1 with five different configurations: without channel
management and a fixed 1M PHY (Fixed 1M), without channel management and a fixed Coded S8
PHY (Fixed S8), with our proposed channel management and a fixed 1M PHY (Blackl.), without
channel management and only using our proposed PHY mode adaptation (PHY), and finally using
our proposed channel management and PHY mode adaptation in parallel (Blackl. + PHY). In all
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Figure 4.6: Link-layer reliability (PDR) and average current consumption of the slave (ISlave) for five different
configurations. Running both mechanisms in parallel (Blackl. + PHY) provides a PDR > 99% while
minimizing power consumption. Adapted from Publication D.

experimental scenarios, we configure the PHY mode adaptation to sustain a PDR above 99%.

The data in Figure 4.6 show that both of our approaches successfully run in parallel to improve
the link-layer reliability of connection-based BLE. We can see that our BLE channel manage-
ment alone (shown as Blackl.) significantly improves the link-layer reliability in all experiments
shown in Figure 4.6. However, when the BLE signal strength drops significantly, our BLE channel
management alone is not able to sustain the specified minimum PDRmin of 99% (as shown in
Figure 4.6(b)). In case of a weak BLE signal strength, our PHY mode adaptation dynamically
improves the PDR of the BLE connection at the price of an increased power draw. Overall, we
can see that using our BLE channel management in combination with our PHY mode adaptation
is able to sustain the specified minimum PDRmin of 99% while minimizing the necessary power
consumption of the BLE slave. Overall, we see that both of our proposed approaches successfully
run in parallel and are able to sustain a PDR above 99% in all of our experimental scenarios while
minimizing the required power consumption on the BLE devices.
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4.2 Controlling the Latency over BLE Connections

In this section, we present how off-the-shelf BLE devices can monitor and control the latency of in-
dividual data transmissions over a BLE connection. We start by experimentally investigating how
the communication latency of individual BLE packets behaves in real-world environments with
external interference (Section 4.2.1). To the best of our knowledge, we are the first experimental
study highlighting that connection-based BLE communication may experience significant delays
in the face of radio interference. Then, we show how BLE devices can make use of existing HCI
traffic to passively monitor the latency of BLE packets (Section 4.2.2) and how BLE devices can
sustain a given transmission latency by adapting their BLE connection parameters (Section 4.2.3).
Finally, we experimentally show that devices using our approach can successfully sustain a given
latency bound, even in harsh RF environments (Section 4.2.4).

4.2.1 BLE Latency in Noisy RF Environments

We start by investigating how the latency of data packets exchanged over a BLE connection be-
haves in a real-world environment. Based on our work in Publication A, we can calculate the
upper bound on transmission latency over a BLE connection under ideal channel conditions as:

tmax =

⌈
D

F

⌉
· CI + tCE , (4.2)

where D is the data packet length in bytes, F is the maximum number of bytes that can be trans-
mitted during a single BLE connection event, CI is the BLE connection interval, and tCE is the
maximum duration of a BLE connection event.

Experimental setup. To check if the calculated tmax holds in real-world settings where external
interference may be present, we experimentally measure the latency of individual data packets
over a BLE connection under different conditions. We use a Nordic Semiconductor nRF52840
DK [159] running Zephyr RTOS [217] as a BLE slave and connect it to a Raspberry Pi 3B (Pi3),
using its on-board Broadcom BCM43439 BLE radio, acting as BLE master. The slave period-
ically sends a packet with a link-layer packet length of 80 bytes to the master once every sec-
ond. We measure the transmission latency (tlatency) of every slave transmission using our D-
Cube testbed facility [183, 184] as the time difference between the slave’s application issuing the
packet transmission and the master’s application successfully receiving the packet from the slave.
The BLE connection in our experiments uses a CI = 250ms, supports an F = 128 bytes, and
has a tCE = 10ms. Using Equation 4.2, we therefore expect a maximum transmission latency
tmax = 260ms for our data packet exchanges from BLE slave to master.

4.2.1.1 Latency in a Common Office Environment

First, we measure the BLE transmission latency in a common office environment over 48 hours.
Figure 4.7 shows the latency of the BLE transmissions from slave to master in our common office
environment measured experimentally. Each bar in Figure 4.7 shows the percentage of data pack-
ets that exceed tmax within a period of 15 minutes. We can clearly see that a significant percentage
of packets (up to 21.74%) exceed tmax, especially during daytime when the office is crowded and
external interference is present.
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Figure 4.7: Percentage of data packets exceeding the expected maximum transmission latency (tmax) in a com-
mon office environment across 48 hours. When people are present in the office, up to 22% of all
transmissions are delayed. Adapted from Publication B.

4.2.1.2 Systematic Latency Study

To study the latency of BLE transmissions more systematically, we use the same experimental
setup in a vacant university laboratory, where we have fine-grained control over the interference
experienced by our BLE devices. Figure 4.8 shows the results of our experiments performed in our
testbed facility. Each subplot in Figure 4.8 shows the tlatency (top) and the used BLE data channel
map (bottom) of the BLE connection. In this experiment, master and slave have a direct line of
sight and a distance of approximately 10 meters. Packets with a latency exceeding the calculated
tmax = 260ms (indicated as the dashed horizontal line), are marked as delayed.

No interference. In Figure 4.8(a), we see that even when we do not create any radio interference
in our testbed, individual packets are delayed. These delays are likely caused by link-layer packet
loss due to multipath fading or beaconing activities by nearby Wi-Fi devices. On average, 6.33%
of all packet transmissions in this scenario exceed tmax.

Classic Bluetooth interference. Figure 4.8(b) shows that co-located Classic Bluetooth commu-
nication - we are creating Bluetooth RFCOMM traffic with a bandwidth of 725 kbits/s on three
parallel Classic Bluetooth connections - affects the communication latency of the BLE connec-
tion. Every data packet is eventually successfully received, but between 10% and 15% of packets
experience a latency above tmax. We further see that the BLE channel management of the Broad-
com radio blacklists BLE data channels to mitigate the effects of co-located Bluetooth interfer-
ence. Classic Bluetooth, however, also makes use of frequency hopping, which means that the
Broadcom BLE master is not able to mitigate the effects of Classic Bluetooth interference on the
performance of the BLE connection.

Wi-Fi interference. Figure 4.8(c) and 4.8(d) show the effects of co-located Wi-Fi interference on
the performance of the BLE connection. In these scenarios we use JamLab-NG [185] to create
Wi-Fi packets on Wi-Fi channel 11 with a transmission power of 30 mW near the BLE master
(Figure 4.8(c)) or the BLE slave (Figure 4.8(d)). In both scenarios, all data packets are eventually
successfully received by the BLE master, but some transmissions are significantly delayed. When
the Wi-Fi interference is near the BLE master, the BLE channel management of the Broadcom
radio successfully detects and mitigates the effects of Wi-Fi interference on the BLE connection.
As a result, on average, only 12.42% of the received BLE packets exceed tmax. However, when
the Wi-Fi interference is near the BLE slave, the Broadcom radio does not detect all BLE data
channels affected by the Wi-Fi interference and, therefore, does not mitigate the effects of Wi-Fi
interference on the BLE connection. Therefore, in this scenario 28.7% of data packets are delayed
on average.
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(c) Wi-Fi interference near the BLE master
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(d) Wi-Fi interference near the BLE slave

Figure 4.8: Packet latency (tlatency) and BLE data channel map of a BLE connection under different interference
scenarios. Adapted from Publication B.

4.2.1.3 Lessons Learned

Our experiments confirm that BLE connections are successfully able to transmit all data packets,
even under heavy interference, as highlighted in [193]. Nevertheless, external interference may
cause link-layer packet loss (as we show in Section 4.1), which in turn leads to significant trans-
mission delays of BLE data exchanges. This holds true when other BLE radio platforms are used
as BLE master. In our work (shown in detail in Publication B), we repeat our experiments with
two other popular BLE radio platforms (the Qualcomm CSR8510 A10 platform and the Panasonic
PAN1762 platform) acting as BLE master. Although the BLE channel management of the BLE
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platforms significantly differs – the channel management of the Broadcom and Qualcomm plat-
form work rather effectively, while the Panasonic does not make use of channel management in
our experiments – all three used BLE platforms lead to 25% of BLE transmissions being delayed
in some cases. Unfortunately, state-of-the-art BLE devices do not have a standardized way for
an application to monitor its transmission latencies or detect if its data transmissions are delayed.
Only with the release of BLE version 5.2 [26], future BLE devices using the new isochronous
BLE channels will be able to capture link-layer loss. The mechanism used by BLE 5.2 to monitor
communication latencies, however, closely resembles our approach presented next.

4.2.2 Measuring BLE Latency

To allow standard BLE devices to monitor and predict the latency of their transmissions, we an-
alytically model the transmission latency over BLE connections (see Section 2.2.3). Therefore,
we update the BLE latency model for ideal channel conditions in Equation 4.2 by introducing
the nCE metric, which captures the effects of link-layer packet loss and resulting retransmissions.
The nCE metric expresses the number of connection events necessary to successfully transmit
individual data fragments over a BLE connection. Our revised model calculates tmax as:

tmax =

( dD/F e∑

f=1

nCEf
· CI

)
+ tCE , (4.3)

where the bound dD/F e captures the fragmentation of data with length D into one or multiple
data fragments of length F , and nCEf

expresses the nCE of an individual data fragment f . CI is
the BLE connection interval and tCE is the maximum duration of a single BLE connection event.

Equation 4.3 can be used by off-the-shelf BLE devices to monitor and control their communi-
cation latency. To use our updated model, however, BLE devices need to accurately measure the
nCE of their transmissions. Measuring the nCE of a BLE connection, however, is difficult due to
the design of the BLE communication stack (see Section 2.1.2). As mentioned above, the BLE
controller autonomously handles all link-layer functionality and hides its inner workings from the
BLE host. An application running on the BLE host, therefore, cannot directly measure the nCE

of ongoing transmissions but needs to find a way to estimate the nCE using application-layer
acknowledgments or HCI information, which we discuss next.

4.2.2.1 Estimating nCE using Round-trip Time

One approach to estimate the nCE of individual data transmissions, is to use application-layer
ACKs and measure the round-trip time (RTT), which we call RTT-based nCE estimation. Fol-
lowing this approach, every data packet sent by an application is confirmed by an ACK from the
application running on the peer device, as shown in Figure 4.9.

An application can measure tRTT as the time between issuing the transmission of a data packet
P and receiving the application-layer ACK A. The measured tRTT consists of two parts:

tRTT = tP + tA, (4.4)

where tP captures the time between issuing and successfully transmitting the packet P , and tA
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Figure 4.9: RTT-based nCE estimation for a slave transmitting a data packet (P) and receiving an ACK (A).
The figure shows the behavior of the application (App.) and link layer (LL) on both BLE devices.
Adapted from Publication B.

captures the time between the peer device issuing and successfully transmitting the ACK A. Both
packet exchanges, data packet P and ACK A, can be modeled as individual transmissions using
Equation 4.3. By assuming that P and A have a packet length of D, we can calculate tRTT as:

tRTT ≤ 2 · tmax = 2 ·
⌈
D

F

⌉
· nCEf

· CI + 2 · tCE . (4.5)

Hence, an application can use tRTT measurements to estimate the average nCEf
as:

nCEf
=

⌈
tRTT − 2 · tCE

2 · dD/F e · CI

⌉
. (4.6)

This RTT-based nCE estimation, however, has several limitations. First, developers need
full control over the applications running on the master and the slave to introduce application-
level ACKs and RTT measurements. Second, application-level ACKs introduce additional energy
consumption, which may not be suitable for low-power applications. Third, this estimation ap-
proach can only calculate the average nCEf

across all fragments of a data exchange, which leads
to an underestimation of nCEf

values in certain scenarios, as we show in Section 4.2.2.3.

4.2.2.2 Estimating nCE using HCI Timing Information

To address the limitations of RTT-based nCE estimation, we present our novel HCI-based
nCE estimation, which passively monitors standardized HCI commands and events to accurately
estimate the nCEf

of individual data fragment transmissions. Since our HCI-based nCE ap-
proach only uses standardized HCI information, it can be used on off-the-shelf BLE devices.

Figure 4.10 shows how a BLE slave can use HCI-based nCE estimation without requiring
application-layer ACKs from the master. TADD, TFREE , and TRX are specific timestamps ex-
tracted from passively monitoring the existing HCI communication on the BLE slave. TADD is
the timestamp when the application issues the data packet transmission, indicated as ACL data
packet command on the HCI. TFREE is the timestamp when the BLE controller indicates that
it has freed its outgoing packet buffer by sending an HCI Number Of Completed Packets
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Figure 4.10: HCI-based nCE estimation for a slave transmitting a data packet (P) consisting of one data frag-
ment. The figure shows the behavior of the application (App.) and link layer (LL) on both BLE
devices. Adapted from Publication B.

event to the BLE host. TRX is the timestamp when the master’s host is notified that the packet P
has been successfully received from the slave.

As shown in Figure 4.10, the slave can measure TADD and TFREE and calculate tTX . The
measured tTX consists of two components:

tTX = tF + tLL, (4.7)

where tF is the latency of successfully transmitting a single data fragment into the master’s recep-
tion buffer and tLL captures the time required at the slave to successfully receive the link-layer
ACK and freeing the outgoing packet buffer in the slave’s BLE controller.

The transmission latency of a single data fragment (tF ) is calculated by using D = F and
Equation 4.3, as:

tF ≤ nCEf
· CI + tCE . (4.8)

We assume that the short link-layer acknowledgment is successfully transmitted within the first
transmission attempt and neglect its duration, resulting in:

tLL = CI. (4.9)

With this assumption and using Equation 4.7, we calculate tTX as:

tTX ≤ (1 + nCEf
) · CI + tCE . (4.10)

Therefore, a BLE slave can calculate the nCEf
of individual fragments as:

nCEf
=

⌈
tTX − tCE

CI

⌉
− 1. (4.11)

4.2.2.3 Accuracy and Power Consumption of nCE Estimation

To compare the accuracy and energy-efficiency of the two proposed nCE estimation approaches,
we implement both approaches on the Nordic Semiconductor nRF52840 DK [159] using the
Zephyr RTOS [217]. Because both approaches only require standardized BLE functionality, they
can be implemented on every standard-compliant BLE platform. Even devices that using a propri-
etary interface between host and controller can use our approaches with only minor adaptations.
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Figure 4.11: Accuracy of HCI-based and RTT-based nCE estimation for two connection intervals. Adapted
from Publication B.
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Figure 4.12: Average power consumption of a BLE slave using the proposed nCE estimators for different con-
nection intervals (CI) and interference. Adapted from Publication B.

Accuracy. We reuse the experimental setup from Section 4.2.1 and use our time-synchronized
testbed facility to measure the actual nCEf

for every transmitted data fragment from slave to
master. We then compare these baseline nCEf

measurement with the estimated nCEf
values of

our RTT-based and HCI-based nCE estimation approaches.

Figure 4.11 shows the percentage of nCEf
values that are correctly estimated, overestimated,

or underestimated (shown in green, orange, and red). The data clearly show that the proposed
HCI-based nCE estimation is more accurate in estimating the nCEf

of packet transmissions,
especially for transmissions experiencing high link-layer loss indicated by a high baseline nCEf

.

Power consumption. Using our D-Cube testbed facility [183], we measure the average power
consumption of a BLE slave using both nCE estimation approaches under different RF noise.

Figure 4.12 shows the average power consumption of the BLE slave for different BLE con-
nection interval configurations and different types of interference. As expected, the HCI-based
nCE estimation approach consumes significantly less power than RTT-based nCE estimation.
The additional application-layer ACKs, which are required by RTT-based nCE estimation, re-
sult in an approximately 18% higher power consumption of the BLE slave, independent of the
type of interference and the used CI .

Overall, HCI-based nCE estimation clearly outperforms RTT-based nCE estimation in
both accuracy and power consumption. Therefore, we only use the HCI-based nCE estimation
approach to control the transmission latency of BLE applications, which we show next.
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Figure 4.13: Percentage of delayed packets and average power consumption of a slave with and without connec-
tion interval adaptation in three different environments. Adapted from Publication B.

4.2.3 Controlling BLE Latency

We can use recent nCE estimates to monitor the latency of packet transmissions over a BLE con-
nection and adapt the BLE connection parameters, if necessary, to sustain a given upper latency
bound (as discussed in Section 2.2.4). Using Equation 4.3, we can compute a maximum connec-
tion interval (CImax) as:

CImax ≤
tmax − tCE

dD/F e · nCEf?
, (4.12)

where nCEf? is the estimated nCE value for upcoming data fragments and CImax is the most
energy-efficient BLE connection interval that is able to sustain the upper latency bound tmax. An
application running on a BLE slave can use Equation 4.12 in combination with nCEf? estimation
to calculate the most suitable BLE connection interval. If the slave detects that the BLE connection
interval needs to be changed, it updates the BLE connection parameter of the BLE connection
following the standardized BLE parameter update, as discussed in Section 2.1.4.

As we show in Publication B, using the maximum nCEf
value across the 64 most recent packet

transmissions as nCEf? is an efficient and effective way to estimate nCEf?.

4.2.4 Evaluation

We implement our adaptation approach on a BLE slave using the nRF52840 DK and the Zephyr
RTOS and connect it to the Pi3 with its onboard Broadcom radio. We use our testbed facility (see
Section 4.2.2) to measure the latency of individual data transmissions.

4.2.4.1 Systematic Evaluation

We compare the behavior of a slave using a fixed connection interval (Sfixed) to that of a slave
using our adaptation approach (Sadapt). Sfixed calculates the fixed connection interval using Equa-
tion 4.2 and Sadapt uses the implemented adaptation described in Section 4.2.3. Both slaves try to
sustain a maximum transmission latency of tmax = 260ms.

Figure 4.13 shows the performance of Sfixed and Sadapt in three different RF environments. On
top of Figure 4.13, we see the percentage of packets that exceed tmax, and on the bottom, we see
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Figure 4.14: When adapting its connection interval (CI) at runtime, a slave is able to significantly increase the
timeliness of its BLE communications. Adapted from Publication B.

the average power consumption of the slaves. The data clearly show that our adaptation approach
(shown in red) is successfully able to control the latency of its packet transmissions, even under
heavy interference. At most 0.55% of transmissions from Sadapt are delayed in our experiments,
which comes at the cost of below 18% of additional energy consumption compared to Sfixed.

4.2.4.2 Long-term Evaluation

We re-run the experiment in our common office environment (discussed in Section 4.2.1.1 and
shown in Figure 4.7) with our adaptation approach over 48 hours. Figure 4.14 shows the number of
delayed packets and the adaptation of the BLE connection interval in this experiment. Compared
to Figure 4.7, where up 22% of packets within 15 minutes are delayed, our adaptive approach
results in at most 1.34% of delayed packets within 15 minutes. On average, only 0.54% of all
packets are delayed using our adaptive approach (compared to an average of 6.18% of delayed
packets without adaptation).

These improvements in transmission latency are consistent across different BLE platforms act-
ing as BLE master and different environments, as we show in Publication B. In some scenarios,
our adaptive approach reduces the number of delayed packets by a factor of 40.

4.3 Summary

In this chapter, we have shown how to improve the performance of connection-based BLE commu-
nication on off-the-shelf devices by adapting different BLE communication parameters at runtime
to changes in the local RF environment. Our proposed BLE channel management effectively in-
creases the link-layer reliability of a BLE connection by dynamically selecting only high-quality
data channels for data exchange. Our BLE PHY mode adaptation successfully sustains a given
minimum link-layer reliability, while avoiding unnecessary energy consumption on BLE devices.
Our BLE connection parameter adaptation enables time-critical data exchange over a BLE con-
nection by monitoring and controlling the delay of individual BLE transmissions.

Because our improvements fully adhere to the BLE specification, they can easily be included
into existing and future BLE applications. Upcoming BLE devices supporting the latest BLE
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versions, such as BLE version 5.2 [26] and 5.3 [27], may also use our solutions to improve their
communication performance. For example, BLE devices may use BLE ISO channels (introduced
by BLE version 5.2) in combination with our BLE parameter adaptation to improve their real-
time capabilities and energy efficiency. Furthermore, slave devices supporting BLE version 5.3 or
above may use our BLE channel management to further increase link-layer reliability.
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Connecting BLE Devices to the Internet

This chapter focuses on answering our second research question (RQ 2) and presents how con-
strained devices can use IPv6-over-BLE communication to connect to the IoT and exchange
IPv6 data. Section 5.1 shows how IPv6 over BLE, according to the RFC 7668, can be used
on off-the-shelf hardware and how IPv6-over-BLE communication compares against IPv6 over
IEEE 802.15.4. Section 5.2 presents how IPv6-over-BLE devices can support different IPv6 traf-
fic flows on constrained devices. This chapter is based on Publication A included in this thesis.

5.1 BLEach: Enabling IPv6 over BLE on Constrained Devices

As mentioned in Section 1.2, IoT devices typically need to exchange data with other devices on
the Internet, e.g., to send measurement data, receive commands, or check for firmware updates. In
most existing BLE-based IoT applications, Internet connectivity is provided by a dedicated gate-
way device, such as a smartphone or a laptop, that runs a custom application translating standard
GATT-based BLE packets into IP packets that can be sent to a predefined server on the Internet.
Using such gateway devices, however, creates major interoperability, scalability, and evolvability
problems in the overall system [43, 222, 232]. Next, we briefly discuss the main problems of ap-
plications using gateways and show how using IPv6-over-BLE communication according to the
RFC 7668 [156] can fix them.

First, IoT nodes typically need to communicate with other IoT devices or existing network
infrastructure to achieve their application goal. Unfortunately, nodes exchanging standard GATT-
based BLE packets are not directly interoperable with other IoT devices. Any packet from such a
node needs to be translated by the gateway into IP packets that can be sent to other devices. Im-
plementing such customized protocol translation, however, introduces significant development and
maintenance overhead. By exchanging IPv6 packets over BLE connections, i.e., using IPv6 over
BLE, BLE-based nodes are fully interoperable with other IPv6 devices and can directly exchange
data without the need of any custom gateway translation functionality.

Second, many IoT applications, such as smart city or industrial automation applications, consist
of a vast number of nodes. Managing such a large number of devices, e.g., setting the correct
device address and configuration in every node, is hard, especially when designing custom de-
vice management solutions based on standard GATT-based BLE. Furthermore, creating a custom
GATT-based solution for routing packets between many IoT devices is also difficult and error-
prone. Fortunately, IPv6 already provides well-established device management and routing func-
tionality for large-scale applications, such as DHCP or DNS. Applications using IPv6 over BLE
can, therefore, easily be deployed and managed via using established tools and protocols.
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Third, the functionality of individual nodes is usually evolving over time, i.e., new features are
added or existing functionality is updated. In GATT-based BLE applications, a developer cannot
simply update the firmware of a node to add a new feature or change an existing one, but also needs
to update the custom gateway to support the changes. Again, this makes maintaining and updating
the overall system error-prone and cumbersome. By using IP and its end-to-end principle, IPv6-
over-BLE applications are fully evolvable and can easily be changed and upgraded without the
need to also update the gateway logic, which significantly reduces errors and development time.

In this section, we show how constrained and low-power devices with BLE support can use
IPv6-over-BLE communication to exchange IPv6-packets with other devices on the Internet. As
mentioned above, using IPv6 over BLE communication in BLE-based IoT applications makes the
overall system significantly more interoperable, scalable, and evolvable. Towards this goal, we
present BLEach, our IPv6-over-BLE communication stack for low-power devices that is part of
the Contiki OS [66]. BLEach is the first IPv6-over-BLE stack that is fully open-source (http://
www.iti.tugraz.at/BLEach) and supports both the IPv6-over-BLE node and router roles.

In contrast to our work presented in the other chapters of this dissertation, where we use the
Zephyr RTOS [217] on the Nordic Semiconductor nRF52 platform [159], this chapter uses the
Contiki OS [66] on the Texas Instruments CC2650 platform [216]. The main reason for this is
that at the time of our research, the Texas Instruments CC2650 in combination with Contiki was
the only platform allowing full access to all communication stack layers, including the BLE ra-
dio. Furthermore, by using this hardware/software combination we were able to compare our
IPv6-over-BLE communication stack to the widely used Contiki IPv6-over-IEEE 802.15.4 com-
munication stack on the same hardware platform (as we show in Section 5.1.5).

5.1.1 Requirements

During the design and implementation of BLEach, we adhere to the following requirements:

Interoperability. BLEach needs to fully adhere to the RFC 7668 [156] and the BLE specifica-
tion [24] to allow full interoperability with any other standard-compliant IPv6-over-BLE device.
This way IPv6-over-BLE nodes running BLEach can follow the standardized primitives to estab-
lish an IPv6-over-BLE connection with routers supporting the RFC 7668 and use this connection
to communicate with any other IPv6-enabled IoT device on the Internet.

Full-fledged support for IPv6 over BLE. BLEach should support both IPv6-over-BLE node and
router roles. This allows BLEach to not only run on battery-powered node devices that stream
sensor readings to a cloud server, but also to run on router devices to provide Internet access to
one or multiple nodes. Having support for both device roles not only allows BLEach to be self-
contained (i.e., it does not require a separate communication stack on the router), but also allows
for detailed experiments and further optimizations of IPv6-over-BLE communication, as we have
full control over both IPv6-over-BLE devices.

Exposing IPv6-over-BLE tuning knobs. To optimize and fine-tune the performance of individual
IPv6-over-BLE devices, we need to have full control over all key parameters of an IPv6-over-BLE
connection. Therefore, BLEach needs to expose all IPv6-over-BLE tuning knobs and allow to
dynamically change one or multiple of these parameters at runtime. By tuning these knobs, a
device can sustain given application requirements (e.g., latency, throughput, or reliability) even in
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harsh environments with dynamic environmental changes.

Minimal processing and memory overhead. To support even very constrained devices, BLEach
needs to add IPv6-over-BLE support while limiting its computational overhead, e.g., caused by
IPv6 header compression or IPv6 neighbor table lookups. Furthermore, BLEach should require
minimal memory resources in RAM and ROM, as memory may be very limited on some con-
strained devices.

Fully modular and extendable design. To allow further optimizations to IPv6-over-BLE commu-
nication, BLEach’s design should be fully modular. Such a modular stack design allows BLEach
to be easily extendable by switching individual stack layer implementations to introduce new func-
tionality or improve existing stack layers.

Hardware agnostic. BLEach should be agnostic to the used hardware platform and should sup-
port a wide range of different hardware platforms (e.g., single-core and dual-core platforms) by
only requiring minimal changes to the lower stack layers. An application should be able to use
BLEach without requiring to have detailed knowledge about the actually used hardware platform.

5.1.2 The BLEach Communication Stack

Figure 5.1 shows the architecture of our modular BLEach IPv6-over-BLE communication stack.
One of the advantages of IPv6-over-BLE communication according to RFC 7668 is that it does not
require any changes to the network (IPv6) or transport layers of existing communication stacks.
Therefore, we can use the existing network and transportation layers of Contiki for IPv6 over BLE
and only need to design the lowest four layers to support a BLE link layer.

One key challenge in designing BLEach, however, is the black-box nature of the BLE controller,
which hides all low-level functionality from the upper stack layers and temporally decouples radio
processing from higher-layer protocols (see Section 2.1.2). This behavior of the BLE controller
leads to a number of fundamental differences in the communication stack layers compared to
existing communication stacks for IoT devices, such as the IPv6-over-IEEE 802.15.4 stack in
Contiki (shown in Figure 5.1). The latter typically foresees a radio duty cycling layer scheduling
transmissions and directly controlling the on-time of transceivers, as well as a MAC layer taking
care of collision avoidance and retransmission of packets [65, 150]. However, all these tasks are
already accomplished by the BLE controller, and the challenge for an IPv6-over-BLE stack is
to indirectly control all these operations from the above layers in order to fine-tune application
performance.

BLE link and PHY. The BLE link and PHY sits at the bottom of the BLEach communication
stack, implements all necessary services provided by a BLE controller, and exposes these services
to the upper stack layers. As shown in Section 2.1.2, the services exposed by the BLE controller
include creating a BLE connection to a peer device, appending packets to the outgoing packet
buffer, and notifying upper stack layers about incoming packets. This layer is the only hardware-
specific layer within BLEach and needs to support both closed-source, proprietary BLE controllers
and open BLE controllers.

Closed-source BLE controllers, such as the Nordic Semiconductor nRF52 SoftDevice [52], au-
tonomously implement the necessary BLE services and hide their implementation details behind
the standardized BLE HCI from developers. Open BLE controllers, such as the one provided by
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Figure 5.1: Architecture of Contiki’s IPv6-over-IEEE 802.15.4 stack (left) and the corresponding layers of
BLEach (right). Adapted from Publication A.

the Texas Instruments CC2650 platform [51], require developers to implement (parts of) the BLE
services using vendor-specific radio APIs. Therefore, implementing the BLE link and PHY on
open BLE controllers is more complex, but also allows to accurately fine-tune and improve the
BLE radio functionality. One example for such an improvement in the BLE radio is an effective
BLE channel management and PHY mode adaptation as we show in Section 4.1 of this thesis.

Parametrization layer. The parametrization layer sits above the BLE link and PHY and is re-
sponsible for selecting and dynamically adapting the tuning knobs of the BLE connection. In
contrast to parametrization layers for IPv6-over-IEEE 802.15.4 communication stacks, which di-
rectly adapt the radio duty cycle by enabling and disabling the radio [65,150], the parametrization
layer of BLEach indirectly changes the BLE radio duty cycle by adapting the BLE connection
parameters (the connection interval and slave latency) via standardized commands.

As the used connection parameters significantly affect system and communication performance,
which we discuss in Section 2.2.1, this parametrization layer allows developers to dynamically
change the BLE connection parameters to influence application metrics such as latency, through-
put, or energy efficiency. In the basic version of BLEach, the parametrization layer simply config-
ures suitable BLE connection parameters after connection establishment and does not perform any
parameter adaptation. However, due to its modular and extendable design, different parametriza-
tion layer versions may be used depending on individual application needs, which we show in
Publication A. For example, the parametrization layer may monitor and control the latency of
BLE transmissions following the approach we present in Section 4.2. Furthermore, this layer
could also temporarily terminate a BLE connection and re-establish it at a negotiated point in time
to improve the energy efficiency of mostly-off sensing devices [32, 40].

L2CAP layer. The L2CAP layer in the IPv6-over-BLE communication stack has two main func-
tions, as specified in the RFC 7668 and summarized in Section 2.1.5. First, this layer handles the
fragmentation and reassembly of IPv6 packets, which makes it possible to exchange large IPv6
packets over constrained BLE connections. Using L2CAP fragmentation/reassembly, large IPv6
packets are fragmented into smaller L2CAP fragments that are subsequently transmitted to the
peer device. Second, the L2CAP layer creates a logical channel between the IPv6-over-BLE node
and router, and uses credits to control the flow of individual fragments to avoid buffer overflows,

– 64 –



5 Connecting BLE Devices to the Internet

as we explain in detail in Section 2.1.5.

IPv6-over-BLE devices may adapt this credit-based flow control mode to create a QoS mecha-
nism that allows to prioritize different IPv6 packet flows over others, which we discuss in detail in
Section 5.2 of this dissertation.

IPv6 compression layer. As mentioned in Section 2.1.5, the RFC 7668 foresees the use of IPv6
header compression as specified by RFC 6282 [101] over IPv6 over BLE. This header compres-
sion mechanism significantly compresses the header of IPv6 packets and, therefore, improves the
energy efficiency of IPv6-over-BLE communication.

In contrast to IPv6-over-IEEE 802.15.4 communication, the IPv6 compression layer of BLEach
only performs header compression. Packet fragmentation and reassembly, which is typically per-
formed in the same 6LoWPAN layer as IPv6 header compression, is not part of BLEach’s IPv6
compression layer, as fragmentation is already handled by L2CAP.

Network and transport layers. As discussed above, IPv6 over BLE does not require any changes
to the IPv6 network layer and reuses the standard IPv6 addressing scheme, neighbor discovery,
and packet format. Moreover, IPv6 over BLE supports any transport layer on top of IPv6. There-
fore, BLEach can reuse any IPv6 implementation for constrained devices such as Contiki’s uIP
layer [64] and supports TCP, UDP, or any other upper layer running on top.

5.1.3 Integrating BLEach into Contiki

We integrate BLEach into the Contiki OS and reuse its IPv6 and UDP support. Furthermore,
we map each of the four lowest layers of BLEach to an existing layer in Contiki’s IPv6-over-
IEEE 802.15.4 communication stack, as shown in Figure 5.1. This allows developers to use the
same application code on either IPv6 over IEEE 802.15.4 or IPv6 over BLE by simply changing
the application’s configuration file at compile time, which we show in Section 5.1.5.

Because of its generic architecture, BLEach can easily be ported to an arbitrary BLE platform
by adapting only the BLE link and PHY implementation. All other stack layers can remain un-
changed. Moreover, the buffer sizes of the layers of BLEach as well as the maximum number
of simultaneously supported BLE connections are fully configurable, which allows developers to
optimize the stack for the hardware platform and the application at hand.

5.1.4 Implementing BLEach

We implement BLEach on the Texas Instruments CC2650 platform [216], which uses an ARM
Cortex-M3 application core and a separate ARM Cortex-M0 radio core with IEEE 802.15.4 and
BLE support. The basic stack layers of BLEach are implemented as follows:

BLE link and PHY. This layer implements the BLE link and PHY on the CC2650 platform and
supports both the BLE master and slave role according to the BLE specification v4.1 [23]. In
slave mode, the device may be connected to a single master at a time. In master mode, the device
is able to maintain multiple simultaneous connections, whose maximum number depends on the
buffer configuration of the BLEach layers. Per default, our implementation can support up to 4
simultaneous BLE connections and allows a BLE connection interval (CI) in the range from 20 ms
to 4000 ms as well as a BLE slave latency (SL) between 0 and 500. The CC2650 platform features
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an open BLE controller with an API based on shared memory and hardware handshakes. To use
BLEach on the CC2650 hardware platform, we implement all necessary BLE services (connection
scheduling, buffer management, incoming packet notifications, data channel selection) in Contiki.

Parametrization layer. In the minimum configuration of BLEach, the parametrization layer uses
default BLE connection parameters and does not perform any parameter adaptation at runtime. In
Publication A, however, we show how this layer can be extended to perform adaptive BLE radio
duty cycling based on the current application traffic to improve energy efficiency.

L2CAP layer. The standard L2CAP layer of BLEach supports IPv6 packets with a maximum
length of 1280 bytes and splits them into 256-byte L2CAP fragments. After node and router have
established a BLE connection, the router creates a single L2CAP LE credit-based flow control
channel to the node (as discussed in Section 2.1.5). In the standard L2CAP layer, we use a simple
threshold-based flow control mechanism, which grants additional credits to a peer device whenever
the peer’s credits drop below a fixed threshold. In our implementation, we grant 4 additional credits
to the peer when it’s credit count drops below 2. This simple flow control mechanism ensures that
the two peer devices can exchange at least one L2CAP fragment at any given time.

IPv6 compression layer and above. We adapt the sicslowpan layer of Contiki to create the
IPv6 compression layer of BLEach. Therefore, we remove the IPv6 fragmentation functionality
of sicslowpan and only use its IPv6 header compression functionality. Furthermore, we use
Contiki’s uip [64] as BLEach’s network and transport layers.

5.1.5 Evaluation

In this section, we experimentally measure the performance of our BLEach communication stack
to investigate if BLEach fits all requirements stated in Section 5.1.1. Moreover, we compare the
performance of BLEach to that of Contiki’s IPv6-over-IEEE 802.15.4 communication stack on the
same hardware platform and under the same application configuration. A more detailed evaluation
of BLEach can be found in Publication A.

5.1.5.1 Interoperability

One important requirement of BLEach is its interoperability with other IPv6-over-BLE devices
that adhere to the RFC 7668 [156]. To show the interoperability of BLEach, we deploy BLEach
to a Texas Instruments CC2650 device acting as IPv6-over-BLE node and subsequently connect it
to three different IPv6-over-BLE routers: (i) a Raspberry Pi 1 Model B with a LogiLink BZ0015
BLE-USB dongle, (ii) a Raspberry Pi 3 with its onboard Cypress Semiconductor BCM43438 BLE
radio, and (iii) a Texas Instruments CC2650 device running BLEach in IPv6-over-BLE router
mode. To ensure a fair comparison, we configure all three router devices to use a maximum
fragmentation size F = 128 bytes, a BLE connection interval CI = 125 ms, and a BLE slave
latency SL = 0. Our BLEach node is connected to one of the three router devices at a time and
exchanges IPv6 packets with a length of 256 bytes with the router every second.

Table 5.1 shows the results of our interoperability study. We see that the BLEach node is fully
interoperable with all three IPv6-over-BLE router devices. Furthermore, we see that the energy
cost on the node, i.e., the consumed energy on the BLEach node for exchanging IPv6 packets with
an IPv6-over-BLE router, does not depend on the used IPv6-over-BLE router.
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Table 5.1: Interoperability of a BLEach node with three different IPv6-over-BLE router devices.

IPv6-over-BLE router device Interoperable? Energy cost node
TI CC2650 X 103.796 ± 0.659 mJ
Raspberry Pi 3 X 103.821 ± 0.895 mJ
LogiLink BZ0015 X 104.597 ± 0.791 mJ

Table 5.2: Memory footprint of BLEach when supporting a maximum IPv6 packet length of 512 bytes.

IPv6-over-BLE role RAM usage [kB] ROM usage [kB]
Node 3.318 10.941
Router (1 slave) 3.318 12.938
Router (2 slaves) 5.771 13.023
Router (4 slaves) 10.678 13.023

5.1.5.2 Memory Footprint

Next, we measure the memory consumption of BLEach on the Texas Instruments CC2650 plat-
form. For this analysis, we use default BLEach, which supports a maximum IPv6 packet length of
512 bytes and at most 4 simultaneous IPv6-over-BLE node connections.

Table 5.2 shows the result of our memory footprint analysis. BLEach requires 3.318 kB of
RAM and 10.941 kB of ROM when configured as IPv6-over-BLE node device. Moreover, when
operating as IPv6-over-BLE router, BLEach requires 3.318 kB of RAM and 12.938 kB of ROM
when connected to a single node device. A BLEach router can support up to four node devices
simultaneously, which results in 10.678 kB of RAM and 13.023 kB of ROM usage.

Overall, BLEach is very lightweight and can fit on very constrained hardware platforms that
employ only limited RAM and ROM space. Furthermore, as the buffer sizes of BLEach are
fully configurable, BLEach can significantly lower its RAM usage. For example, by limiting the
maximum IPv6 packet length to 64 bytes, a BLEach node requires only 1.53 kB of RAM.

5.1.5.3 Comparing BLEach to IPv6 over IEEE 802.15.4

Next, we compare the energy efficiency of BLEach to the energy efficiency of Contiki’s standard
IPv6-over-IEEE 802.15.4 communication stack on the same Texas Instruments CC2650 platform
using the same application configuration. For this experiment, we use one CC2650 device as a
node device that periodically exchanges UDP packets with the server once every second. Because
BLEach fully adheres to the Contiki network stack architecture, we can reuse the same application
in our experimental runs and only need to change the used link-layer technology via the project
configuration files. When using IPv6-over-IEEE 802.15.4, we enable ContikiMAC’s phase-lock
optimization and use a wake-up interval of 62.5 ms and 125 ms. Similarly, when using IPv6-over-
BLE, we configure BLEach to use a BLE connection interval of 62.5 ms or 125 ms, respectively,
to ensure a fair comparison between the two wireless technologies.

Figure 5.2 shows the energy consumption of the CC2650 node device for different link-layer
technologies (either BLE or IEEE 802.15.4), IPv6 packet lengths, and wake-up/connection in-
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Figure 5.2: Average energy consumption of a Texas Instruments CC2650 node device running either BLEach or
Contiki’s default IPv6-over-IEEE 802.15.4 communication stack. Adapted from Publication A.

terval configurations. Each experimental run measures the energy consumption of the node for
exchanging 60 UDP request/response pairs with the router. The x-axis in Figure 5.2 shows the
overall IPv6 packet length, including the IPv6 header, the UDP header, and the UDP payload.
Overall, we can clearly see that BLEach consumes approximately 50% less energy than Con-
tiki’s IPv6-over-IEEE 802.15.4 stack, independent of the used IPv6 packet length or the wake-
up/connection interval. As we show in detail in Publication A, the higher energy efficiency of
BLEach can be explained by its lower processing and radio times. First, IEEE 802.15.4 uses a
physical data rate of 250 kbit/s, which is 4 times lower than that provided by the BLE 1M PHY
used in this experiment. This results in longer radio times for IEEE 802.15.4 when exchanging
packets of equal length. Second, IEEE 802.15.4 has a lower maximum fragment length than BLE,
which results in large IPv6 packets being fragmented into multiple fragments, each introducing
additional link-layer overhead, that are subsequently sent over the wireless link.

Although our experiments show that the BLE link layer is more energy-efficient than
IEEE 802.15.4, the BLE 1M PHY results in a lower maximum achievable communication range
than IEEE 802.15.4. In our experiments shown in Publication A, IEEE 802.15.4 achieves a maxi-
mum communication range of 90 meters in free line-of-sight. The 1M PHY of BLE only achieves
a maximum communication range of 75 meters under the same conditions. Nevertheless, a BLE
node may use our effective BLE PHY mode adaptation to drastically improve its communication
range at the cost of a higher energy consumption, as we show in Section 4.1.3.

5.2 Supporting different IPv6 traffic flows

Most IPv6-over-BLE nodes experience different kinds of IPv6 traffic flows, e.g., time- and safety-
critical data exchanges with a cloud server, non-critical firmware update checks, or even unwanted
ICMPv6 traffic from other devices on the Internet. These different IPv6 traffic flows, however,
are not equally important to the reliable function of the node device (e.g., unwanted traffic may
even drain the battery of the node) and should be treated with different priorities. Moreover, the
priority of individual IPv6 traffic flows may change at runtime depending on the application state.
For example, if the node detects that a critical firmware update needs to be performed, the IPv6
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traffic flow downloading the new firmware should receive the highest priority.

In this section, we show how to extend basic BLEach (as presented in Section 5.1) to support
different IPv6 packet flows each having its own QoS class. Using our QoS support, BLE nodes can
support multiple IPv6 packet flows and can dynamically prioritize certain QoS classes over others.
Furthermore, our novel QoS support may be used in IoT applications to add DiffServ support (see
Section 3.3.2) to IPv6-over-BLE links.

5.2.1 Adding Traffic Prioritization and Multiplexing to BLEach

To support different QoS traffic classes, we extend the basic L2CAP layer of the BLEach network
stack (shown in Figure 5.1) by adding IPv6 traffic prioritization and multiplexing capabilities.

In its basic version, the L2CAP layer of the IPv6-over-BLE communication stack uses a single
L2CAP channel in LE credit-based flow control mode between node and router to exchange IPv6
packets. As discussed in Section 2.1.5 and 5.1.2, the credit-based flow control mode handles
fragmentation and reassembly of large IPv6 packets and uses its credits to prevent buffer overflows
on router and node. Each peer device has a number of credits, which is set at L2CAP channel setup
and may be increased by additional L2CAP signaling packets. Sending an L2CAP fragment to the
peer device increases the device’s credit count by one. If a device has no more credits left, it
cannot send any L2CAP fragments until it receives additional credits from its peer.

To add support for different IPv6 traffic flows to IPv6 over BLE, we establish multiple L2CAP
LE credit-based flow control channels between router and node at connection setup. Each L2CAP
channel has its own fragmentation buffer and credit count and transports a different IPv6 traffic
flow with a distinct QoS class. We adapt the L2CAP transmission behavior to prioritize the trans-
mission of L2CAP fragments on the channel with the highest credit count. By granting a different
amount of credits to each L2CAP channel, a device can prioritize a specific IPv6 traffic flow over
others. For example, a node uses three different L2CAP channels (A, B, and C) to exchange three
different IPv6 traffic flows with the router. Channel A carries critical application traffic, channel B
is used for firmware update checks, and channel C carries ICMPv6 echo request/response traffic.
To prioritize the critical application traffic, the node ensures that the router always has at least 5
L2CAP credits on channel A in comparison to 2 credits for channel B and 1 credit for channel C.
This way, the router always transmits application traffic on channel A with the highest priority to
the node. If channel A has no more data to send, the router transmits the data on channel B to the
node. Only if channel A and B have no more data to send, traffic on channel C is exchanged.

5.2.2 Implementing QoS-enabled L2CAP

We implement our IPv6 traffic prioritization and multiplexing on the Texas Instruments CC2650
platform by extending the basic L2CAP module of BLEach. First, we create a separate L2CAP
channel in LE credit-based flow control mode during IPv6-over-BLE connection setup for every
supported IPv6 traffic flow. This allows us to multiplex different IPv6 traffic flows over a single
BLE connection between node and router. Second, we adapt the fragmentation of the L2CAP layer
such that it prioritizes the transmissions of the channel with the highest credit count. Furthermore,
we allow IPv6-over-BLE devices to change the priority of incoming IPv6 traffic dynamically by
using standardized L2CAP LE flow control credit messages. Although multiple L2CAP channels
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Figure 5.3: IPv6-over-BLE communication between a node and router supporting three different IPv6 traffic
classes with different QoS levels. Adapted from Publication A.

for IPv6 data are currently not foreseen by the RFC 7668, our approach does not violate any BLE
specification and uses only standardized primitives. The BLE specification only permits devices to
grant additional L2CAP credits to the peer and does not foresee that peers can reduce the L2CAP
credit count at runtime. As our implementation fully adheres to the BLE specification, changing
the priority of IPv6 traffic flows may result in brief adaptation periods, which we show next.

5.2.3 Evaluation

We evaluate our IPv6 traffic prioritization and multiplexing mechanism by running an exemplary
IPv6-over-BLE system consisting of a router and a node employing three different IPv6 traffic
flows A, B, and C. In this experiment, flow A transports critical application traffic collected by the
node, flow B carries ICMPv6 traffic, and flow C embeds commands issued by the node to other
nodes in the network. Each IPv6 traffic class is assigned its own L2CAP channel and the channel
priorities are adjusted by the router at runtime using the standardized L2CAP credit messages.
We investigate how our prioritization and multiplexing mechanism affects the performance of the
overall system. In our experiments, we use a BLE connection interval CI = 125 ms and configure
the BLE connection to carry at most 256 bytes during a single connection event. The BLE link
layer, therefore, can send at a maximum data rate of 2 kB/s using eight connection events per
second carrying 256 bytes each.

Figure 5.3 shows the results of our QoS experiment. The top figure shows the utilization of
the BLE link, i.e., the actually achieved data rate of each of the three IPv6 traffic flows, and the
maximum data rate of the IPv6-over-BLE connection (indicated as red dashed line). The middle
of Figure 5.3 shows the data rate of each IPv6 traffic flow under ideal conditions, i.e., without
the restrictions imposed by the actual IPv6-over-BLE connection. The bottom of the figure shows
the priority level of each of the traffic flows, where a high priority level indicates a high priority.
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At time 0, the node periodically transmits 512 bytes/s of traffic class A over the IPv6-over-BLE
connection. After 20 seconds, the node additionally generates 1024 bytes/s of traffic class B. At
time 40 seconds, the node generates 1024 bytes/s of traffic class C. The sum of the three traffic
flows exceeds the maximum achievable data rate over the BLE link and, therefore, the higher-
priority traffic flow C gets scheduled first followed by traffic flow A and only a portion of the
lower-priority traffic flow B is served. At time 60 seconds, the router switches the prioritization
of traffic flow A and C by changing the granted credit count on these channels. Because each
flow needs to consume its current credits before the new priorities take effect, the actual priority
change requires a brief adaptation period (shown by the utilization in Figure 5.3 from time 60 to
62 seconds).

5.3 Summary

This chapter introduced BLEach, the first full-fledged, open-source IPv6-over-BLE communica-
tion stack for constrained and low-power devices. BLEach has minimal processing and memory
overhead, a modular and extendable design, and can easily be used by low-power BLE nodes to
directly exchange IPv6 data with other IoT devices on the Internet. Furthermore, BLEach exposes
the key parameters of IPv6-over-BLE communication as tuning knobs, which enables further op-
timizations, such as supporting different IPv6 traffic flows with dynamic QoS levels.

Although BLEach uses BLE version 4.1 for data exchange, it significantly outperforms existing
IPv6-over-IEEE 802.15.4 solutions, as we show in our experimental evaluation. Porting BLEach to
more recent BLE versions, such as BLE version 5.2 [26], would even increase its energy efficiency,
reliability, and throughput. For example, BLEach could make use of the different BLE PHY
modes to achieve a longer communication range or more throughput (as discussed in Section 4.1).
Furthermore, BLEach may use BLE ISO channels and our proposed BLE connection parameter
adaptation (as shown in Section 4.2) to reduce its communication delay.

In our work on traffic prioritization over IPv6 over BLE, we went beyond the existing BLE spec-
ification and established multiple L2CAP channels in LE credit-based flow control mode between
BLE node and router. With the release of the BLE specification version 5.2 [26] in 2020, having
multiple of these L2CAP channels is officially supported by off-the-shelf BLE devices. Upcoming
BLE devices with support for BLE version 5.2 or above, therefore, can directly make use of our
QoS support for IPv6 over BLE to handle multiple IPv6 traffic flows with different QoS classes.
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6
Meeting End-to-End Requirements in

BLE-based IoT Applications

In this chapter, we answer our third research question (RQ 3) and show how BLE nodes can meet
given end-to-end requirements, such as a given maximum end-to-end latency and a given mini-
mum end-to-end reliability, when communicating with devices outside the local BLE subnet, e.g.,
a cloud server on the Internet. We identify problems of existing cloud-based BLE applications
(Section 6.1) and discuss how BLE nodes can model end-to-end communication latency and reli-
ability (Section 6.2). We further investigate how nodes can estimate and meet end-to-end metrics
using these models (Section 6.3 and 6.4), implement our solutions on off-the-shelf hardware (Sec-
tion 6.5), and experimentally evaluate our improvements (Section 6.6). This chapter is based on
Publication E of this thesis.

6.1 Investigating Cloud-based BLE Applications

We start by experimentally investigating the end-to-end behavior, i.e., the end-to-end communica-
tion latency and reliability, of BLE nodes exchanging data with a cloud server on the Internet.

Figure 6.1 shows the network topology of our initial experiment, where an IPv6-over-BLE node
is connected to an IPv6-over-BLE router providing Internet access. Node and router exchange
IPv6 packets according to the RFC 7668 [156], as discussed in Chapter 5. This network topology
is commonly used in popular IoT protocols, such as CoAP, MQTT, or MQTT-SN. As it is typical
for low-power IoT applications, our node uses the lightweight UDP transport layer to communicate
with the cloud server, instead of the heavyweight TCP transport layer. This allows a low power
and memory consumption on our node at the cost of potential packet loss on the network path [21].

As discussed in Chapter 4, BLE connections use adaptive frequency hopping and autonomous
packet retransmissions to achieve a reliability of 100% within the BLE subnet. Therefore, commu-
nication within the BLE subnet does not experience packet loss, but may experience packet delays
due to link-layer effects such as external radio interference or multipath fading. Packet exchanges
across the external network path, instead, may experience both packet loss and delay. These can-
not be controlled by the individual nodes, and their severity strongly depends on the technology
used to provide Internet access (e.g., Ethernet, 3G, or 4G).

Experimental setup. We measure the end-to-end latency and reliability of IPv6 packet exchanges
across the whole network topology (shown in Figure 6.1) in our wireless testbed powered by D-
Cube nodes [183] located in a vacant laboratory, as described in detail in Publication E.

We simultaneously use four Nordic Semiconductor nRF52840 DK devices [159] to commu-
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Figure 6.1: Network topology when exchanging data between a BLE node and a cloud server over the Internet.
Adapted from Publication E.

nicate with an Amazon Web Service (AWS) cloud server instance located in Frankfurt, Germany.
Each node runs an IPv6-over-BLE application built on the Zephyr OS that periodically transmits
a UDP packet to the server once every second. Whenever the cloud server receives a UDP packet
from one of the nodes, it echoes the received UDP packet back to the node. All packets between
nodes and server have an IPv6 packet length of 128 bytes and carry a unique sequence number to
match request and response. We use a Raspberry Pi 4 (Pi4) device in combination with a custom
BLE HCI-USB dongle as IPv6-over-BLE border router. All nodes use the 2M PHY mode of BLE
and all 37 BLE data channels without channel blacklisting to communicate with the router, i.e.,
the adaptive solutions presented in the previous chapters are disabled in these experiments.

All devices in our experiment (nodes, router, and cloud server) are synchronized to the same
NTP server and, therefore, have the same notion of time. With this synchronization, we sustain
an average clock offset between nodes and server of -43 ± 134µs. This allows us to calculate the
end-to-end latency (tTX ) and the latency within the BLE subnet (tTXBLE

) for every packet sent
from node to server. Similarly, we calculate the end-to-end latency (tRX ) and the latency within
the BLE subnet (tRXBLE

) for packets sent from server to node. To test the impact of different
technologies providing Internet access to our BLE subnet, our router can make use of a wired
Ethernet or a cellular 4G connection for every connected node.

Preliminary results. Table 6.1 and 6.2 show the distribution of the measured latencies between
nodes and server measured over 7 days in our testbed.

First, the tables clearly show that the used Internet connection significantly impacts the overall
communication latency. In our experiments, the maximum experienced communication latency
while using a cellular Internet connection is almost 10 times higher than for a wired connection.
Also, the median latency of a cellular connection is significantly higher than for a wired connec-
tion. To sustain a given end-to-end latency, a BLE node can hence not simply assume a fixed delay
across the external network path but needs to estimate the actual experienced communication delay
on the Internet, which we show in Section 6.3.

Second, Table 6.1 and 6.2 show that, as expected, the BLE connection interval CI affects the
communication latency for packet transmissions and receptions. However, the BLE slave latency
SL does not significantly impact the latency of packets sent by the node (tTXBLE

), as shown in
Table 6.1. Only packets received by the node (tRXBLE

) are affected by the SL parameter, because
the node may skip up to SL connection events when it has no data to transmit, which means
that the router may need to wait up to SL connection events for the node to wake up and receive
packets (see Section 2.1.4).

Hence, we see that both the BLE connection parameters and the behavior of the external network
path affect the end-to-end latency and reliability of packet exchanges. To sustain given end-to-
end requirements while limiting unnecessary power consumption, a node needs to dynamically
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Table 6.1: Measured latencies of packet from node to server (packet transmissions) over 7 days in our testbed
for an IPv6 packet length of 128 bytes. The table shows the median (50%), 95 percentile (95%), and
maximum experienced latency (100%) for different configurations.

Connection CI
SL

tTX [ms] tTXBLE
[ms]

[ms] 50% 95% 100% 50% 95% 100%
wired 50 0 40 88 328 31 79 319
wired 50 4 39 86 732 30 75 258
cellular 50 0 73 1157 3026 28 69 237
cellular 50 4 73 739 4038 27 62 283

Table 6.2: Measured latencies of packet from server to node (packet receptions) over 7 days in our testbed for
an IPv6 packet length of 128 bytes. The table shows the median (50%), 95 percentile (95%), and
maximum experienced latency (100%) for different configurations.

Connection CI
SL

tRX [ms] tRXBLE
[ms]

[ms] 50% 95% 100% 50% 95% 100%
wired 50 0 42 92 293 32 82 284
wired 50 4 41 292 1291 32 282 1281
cellular 50 0 67 601 2411 34 64 176
cellular 50 4 268 531 1031 191 257 499

adapt its BLE connection parameters at runtime to changes in the network. Finding suitable BLE
connection parameters, however, requires new BLE models, which we show in Section 6.2.

One possible approach to sustain given end-to-end latency bounds would be to use application-
level round-trip time measurements on the node to monitor and control the one-way delays tTX

and tRX . The main problem with this approach is that a BLE connection usually uses an SL > 0,
which allows the node to limit its power consumption. An SL > 0, however, also leads to packet
receptions being unpredictably delayed, which significantly affects the accuracy of individual tTX

and tRX estimates. Therefore, this work follows another approach, where we devise a new end-to-
end model (Section 6.2) and show how infrequent probing bursts are able to accurately estimate
the network latency across the entire network path (Section 6.3). In Section 6.4, we combine our
model and network latency estimation to sustain given end-to-end dependability requirements.

6.2 Modeling End-to-End Communication Performance

Based on the local BLE model from Section 4.2 of this dissertation, we devise a new end-to-end
model that fits the use case shown in Figure 6.1. In this end-to-end model, we extend the latency
model to account for delays on the external network path and investigate how both BLE connection
parameters, the BLE connection interval (CI) and the BLE slave latency (SL), affect timeliness
when the node transmits (Section 6.2.1) or receives data (Section 6.2.2).

6.2.1 Transmitting Data to the Server

We start by modeling the end-to-end latency (tTX ) for a node transmitting data packets to a cloud
server using the topology shown in Figure 6.1.
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Figure 6.2: Timing of a BLE node transmitting a data packet (D) to a cloud server on the Internet. Adapted from
Publication E.

Figure 6.2 shows two examples of a transmission from a node to the server. Both examples
show the node application (Node App.) issuing a data transmission (D) between BLE connection
event N0 and N1. In Figure 6.2(a), no BLE link-layer errors occur and the BLE link-layer (LL)
of the node successfully transmits the data in connection event N1 to the router. In Figure 6.2(b),
however, the BLE connection between node and router experiences link-layer errors (see Sec-
tion 4.1 for more details on BLE link-layer errors) during connection event N1. Therefore, the
packet transmission during event N1 is not successful and the node retransmits the packet until
successfully received by the router. After the router has successfully received the packet from the
node, it forwards the packet via the Internet to the server, which takes tTXNET

.

In the examples in Figure 6.2, the packet length (DTX ) is smaller than the maximum packet
lenght of a single connection event (FTX ). Therefore, the packet can be transmitted within a
single BLE connection event. If DTX > FTX , the packet is split into multiple data fragments and
each fragment is subsequently sent in its own connection event.

In Figure 6.2 we see that the end-to-end latency (tTX ) for transmitting a data packet consists of:

tTX = tTXBLE
+ tTXNET

, (6.1)

where tTXBLE
is the transmission latency of the packet between node and router and tTXNET

is
the transmission latency of the packet from router to server. As discussed in Section 6.1, tTXNET

depends on the technology used to connect to the Internet. The delay tTXBLE
can be modeled as:

tTXBLE
=

( dDTX/FTXe∑

f=1

nCEf
· CI

)
+ tCE , (6.2)

as we discuss in detail in Section 4.2.2.

The end-to-end transmission latency tTX is calculated by combining Equation 6.1 and 6.2 as:

tTX =

( dDTX/FTXe∑

f=1

nCEf
· CI

)
+ tCE + tTXNET

. (6.3)

To calculate the maximum end-to-end transmission latency (tTXMAX
), we assume that every
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packet fragment is transmitted with nCEf
= nCEMAX

, i.e., that it experiences the same link-
layer error probability. We further assume that the data packet experiences the maximum delay
across the external network path (tTXNET

= tNETMAX
). Combining these assumptions with

Equation 6.3, we can calculate tTXMAX
as:

tTXMAX
≥ nCEMAX

·
⌈
DTX

FTX

⌉
· CI + tCE + tNETMAX

. (6.4)

As discussed in detail in Section 2.1.4, the slave latency (SL) does not impact the end-to-end
latency of packets transmitted by the node.

6.2.2 Receiving Data from the Server

Next, we model the end-to-end reception latency (tRX ) for a node receiving data from the server.

Figure 6.3 shows two examples of a packet sent from the server to the node. In these examples,
the server issues a data transmission to the node and, after a delay tRXNET

, the router application
(Router App.) successfully receives the packet between connection events N1 and N2. Upon
packet reception, the router forwards the packet to the node by issuing a BLE transmission on its
link layer (Router LL). Next, the router LL tries to send the packet over the BLE connection to
the node in connection event N2. However, the node makes use of its configured slave latency
(SL = 2) and does not wake up during event N2 to receive any packets. Therefore, the router LL
retransmits the packet in the subsequent connection events until the packet is successfully received
by the node. In Figure 6.3(a), where no link-layer errors occur, the node successfully receives the
packet during connection event N3. In the example shown in Figure 6.3(b), the router and node
wake up during connection event N3, but experience link-layer errors and cannot exchange the
packet. Because the node has not received a valid BLE link-layer packet in event N3, it wakes
up during every subsequent connection event until it receives a valid BLE packet from the router,
as specified by the BLE specification [26]. In Figure 6.2(b) this happens during connection event
N4, after which the node has successfully received the data from the server.

Similar to Section 6.2.1, the packet length (DRX ) in these examples is smaller than the maxi-
mum packet length supported by a single connection event (FRX ). If DRX > FRX , the packet is
split into multiple fragments that are subsequently sent from router to node in individual connec-
tion events. In this case, the MD-field in the BLE link-layer header of packets sent by the router
informs the node that more data needs to be exchanged. The node, therefore, does not make use
of its slave latency until all data from the router is successfully received.

The end-to-end reception latency (tRX ) for a node receiving data from a server consists of:

tRX = tRXNET
+ tRXBLE

, (6.5)

where tRXNET
is the packet latency between server and router and tRXBLE

is the packet latency
from router to node. Similar to Section 6.2.1, tRXNET

depends on the technology used to connect
the router to the Internet, and will be studied in Section 6.3. We model tRXBLE

as:

tRXBLE
=

( dDRX/FRXe∑

f=1

nCEf
· CI

)
+ tCE + tSL, (6.6)
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Figure 6.3: Timing of a BLE node receiving a data packet (D) from a cloud server on the Internet. Adapted from
Publication E.

where DRX is the data packet length and FRX is the maximum packet length that can be received
by the node within a single BLE connection event. Like in Equation 6.1,CI is the BLE connection
interval, tCE is the maximum duration of a single connection event, and nCEf

is the number of
connection events necessary to successfully transmit an individual packet or fragment. The delay
tSL measures the additional time required by the router, because the node makes use of its SL and
skips up to SL connection events. tSL has a maximum value of:

tSLMAX
= CI · SL. (6.7)

We combine Equation 6.5 and 6.6 to calculate the end-to-end reception latency tRX as:

tRX = tRXNET
+

( dDRX/FRXe∑

f=1

nCEf
· CI

)
+ tCE + tSL. (6.8)

Furthermore, we use the approach followed in Section 6.2.1 to calculate the maximum end-to-
end reception latency (tRXMAX

) by using nCEf
= nCEMAX

, tRXNET
= tNETMAX

, and Equa-
tion 6.7 as:

tRXMAX
≥ (nCEMAX

·
⌈
DRX

FRX

⌉
+ SL) · CI + tCE + tNETMAX

. (6.9)

In Equation 6.9, we can see that the slave latency SL affects the time tSL and therefore also the
overall end-to-end reception latency. When a node uses an SL > 0, the node minimizes its power
consumption by skipping connection events at the price of increased reception delays.

The end-to-end model described in this section relies on accurate estimations of the delay caused
by the external network path (tNET ), which we investigate next.

6.3 Estimating End-to-End Metrics

One requirement for estimating the delay on the external network path (tNET ) is that the estima-
tion is done on the node device in a way that is fully compliant with the end-to-end principle of IP.
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Using this approach, a node can estimate tNET without requiring any changes to devices on the
network path (e.g., routers). Our approach can, therefore, easily be used by any node connected
to an IPv6-over-BLE compliant router. Other estimation approaches that violate the IP end-to-
end principle, i.e., requiring changes to routers in the network, are seldomly used in practice due
to their huge setup and deployment costs [233]. As our tNET estimation is fully technology-
agnostic, a node can use our tNET estimation independently of the applied technology to connect
to the Internet. Moreover, our estimation allows us to estimate tNET in any network scope, e.g.,
applications that span only a local Intranet.

One simple approach to estimate tNET would be to use existing application traffic to calculate
the delay introduced by the external network path. Unfortunately, this simple approach does not
provide accurate tNET estimations because of the typical asymmetric behavior of BLE connec-
tions. During ordinary operation, the BLE connection typically makes use of a long BLE con-
nection interval (CI) and a BLE slave latency (SL) above 0 to sustain a low transmission latency
while limiting power consumption on the node. Such a setting, however, causes two problems
while estimating tNET . First, an SL > 0 leads to packets from router to node being unpredictably
delayed (see Section 6.2.2), which significantly affects the accuracy of individual tNET estimates.
Second, a large CI value results in a coarse tNET sampling resolution impacting the granularity
of our tNET estimates.

6.3.1 Probing Network Latency

We estimate tNET using short, infrequent probing bursts, in which we exchange short probing
and corresponding acknowledgment packets between node and cloud server. At the start of every
probing burst, the node changes its BLE connection parameters to the smallest possible CI and
a SL = 0, as discussed in Section 2.1.4. By temporarily changing the used BLE connection
parameters for probing, we achieve the lowest possible tNET sampling resolution and eliminate
the unpredictable delay of messages from router to node, as discussed in Section 6.3.3.

After setting the new BLE connection parameters, the node sends short probing packets to the
cloud server. The server responds to each probing packet with a short acknowledgment packet.
The node issues a new probing packet as soon as the previous probing packet has been success-
fully acknowledged by the server. The node can use ordinary application data packets or distinct
IPv6-based packets (e.g., ICMPv6 echo requests/responses) for probing. To achieve the most ac-
curate tNET estimations, however, probe and acknowledgment packets need to fit within a single
connection event, i.e., DTX ≤ FTX and DRX ≤ FRX . After node and server have successfully
exchanged LProbe probe/acknowledgment packets, the node reverts the BLE connection parame-
ters to the setting used before probing and continues with its normal behavior.

During probing, the node measures the round trip time (tRTT ) and the BLE transmission time
(tTXBLE

) of every exchanged probe/acknowledgment pair. tRTT is the time between the node
application issuing a probe packet and successfully receiving the corresponding acknowledgment
from the cloud server. tTXBLE

is measured by monitoring the BLE Host Controller Interface
(HCI), as described in detail in Section 4.2.2.2.

The round trip time tRTT measured by the node consists of two parts:

tRTT = tProbe + tACK , (6.10)
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where tProbe is the end-to-end latency of a probe packet from node to server and tACK is the
end-to-end latency of the corresponding acknowledgment packet from server to node. By using
Equation 6.1 and 6.5 for modeling tProbe and tACK , respectively, we get

tRTT = tTXBLE
+ tTXNET

+ tRXNET
+ tRXBLE

. (6.11)

To simplify our tNET estimation, we assume that the delay across the Internet is symmetric
and call this delay tNET . Please note that, although we assume a symmetric delay across the
external network path, our tNET estimation approach also accurately captures the one-way latency
of asymmetric Internet connections, such as 4G communication, as we show in Publication E. By
assuming a symmetric delay, we can set tNET = tTXNET

= tRXNET
, which gives us:

tRTT = tTXBLE
+ 2 · tNET + tRXBLE

. (6.12)

Using this equation, the delay on the external network path tNET can be calculated as:

tNET =
tRTT − tTXBLE

− tRXBLE

2
. (6.13)

As mentioned above, the node can measure tRTT and tTXBLE
for every probing packet. Unfor-

tunately, tRXBLE
cannot directly be measured by the node but needs to be estimated. Because both

probing and acknowledgment packets fit within a single connection event and tTXBLE
provides

us with the most recent link-layer information, we assume tRXBLE
= tTXBLE

. Furthermore, we
assume that packets from router to node take at least CI , which is the smallest time unit we can
measure with our probing approach, resulting in:

tRXBLE
=MAX(tTXBLE

, CI). (6.14)

6.3.2 Estimating the Maximum Network Latency

Using the tNET estimations of individual packet exchanges, we estimate the maximum network
latency (tNETMAX

) of future packet exchanges. With accurate tNETMAX
estimations and our

proposed end-to-end model from Section 6.2, BLE nodes are able to sustain end-to-end commu-
nication requirements, as we discuss in Section 6.4.

Fortunately, estimating upper latency bounds on packet transmissions across the Internet is a
well-researched topic [69, 104, 105]. However, most of the existing approaches use sophisticated
statistical analysis [69, 180] and are not suitable for constrained devices, such as BLE nodes with
limited power supply and processing capabilities. Therefore, we adapt the well-established RTT
estimation approach of TCP as specified by Jacobson [103] and standardized in [167], as this
approach is suitable for constrained devices.

Instead of using an exponentially weighted moving average as proposed in [167], we record
all individual tNET measurements of a probe burst and calculate their average (tNETAV G

) and
variance (tNETV AR

). Using these values, we can calculate tNETMAX
as:

tNETMAX
= tNETAV G

+K · tNETV AR
, (6.15)
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where we use a fixed K = 4 as specified in [167].

6.3.3 Choosing a Probe Burst Length

In Publication E, we study the most suitable probe burst length (LProbe) that provides an accu-
rate tNETMAX

estimation while limiting the energy consumption caused by probing. We do this
empirically using the setup described in Section 6.1.

Our experiments in four different environments show that a probe length LProbe = 10 provides
the most suitable tNET estimation of future packet exchanges, while also limiting unnecessary
energy consumption on the BLE node. Furthermore, our experiments also show that issuing a new
probing burst every 1000 seconds performs best in our four experimental environments.

6.4 Meeting End-to-End Requirements

Next, we show how our model (Section 6.2) and our tNET estimations (Section 6.3) can be used by
a node to sustain a given end-to-end latency and a given end-to-end reliability, while minimizing
its power consumption. We investigate how a node can cope with network loss (Section 6.4.1) and
meet end-to-end latency requirements when connected to a router with or without radio duty cycle
constraints (Section 6.4.2 and 6.4.3, respectively).

6.4.1 Meeting Reliability Requirements

A node can meet a given minimum end-to-end reliability (r̂MIN ) by dynamically adapting the
number of necessary application packet transmissions based on the current transmission reliability
(rNET ) over the network path. As discussed in Section 6.1, no packets get dropped over the BLE
connection between node and router, because of the autonomous packet retransmission and flow
control of the BLE link layer. However, since we use the lightweight UDP transport layer, packets
may be lost over the external network path due to router buffer congestion or topology changes.
To cope with this packet loss, a node may send additional data packets to sustain r̂MIN .

Estimating transmission reliability. We estimate the current reliability across the network
(rNET ) using ordinary application data exchanges and a moving average filter with a window
length WLOSS . When we receive an acknowledgment for a data packet within the timeout
tT imeout, we count the transmission as successful (rPKT = 1). Otherwise, we count it as un-
successful (rPKT = 0). After every transmission, the node calculates the current rNET as:

rNET =
1

WLOSS

WLOSS∑

j=1

rPKT (j). (6.16)

Adapting transmission attempts. Based on the current rNET value, the node dynamically adapts
the number of necessary application transmission attempts to sustain r̂MIN . Because the packets
between BLE node and cloud server are short and infrequent compared to other Internet traffic,
we neglect the effect of network congestion caused by our BLE nodes.

– 81 –



Enabling Time-Critical Internet of Things Applications Based on Bluetooth Low Energy

Similar to other research [227,229], we assume an independent and identically distributed packet
loss with success probability of rNET and model packet loss using a binomial distribution:

P (X = k) =

(
n

k

)
rkTX(1− rNET )

n−k, (6.17)

where P (X = k) is the probability that exactly k data packets out of n transmission attempts are
successfully exchanged.

To achieve our end-to-end reliability requirement, at least one transmission attempt needs to be
successful. Therefore, r̂MIN can be calculated as:

r̂MIN = P (X ≥ 1) = 1− P (X = 0). (6.18)

Using Equation 6.17 and
(
n
0

)
= 1, we can calculate r̂MIN as:

r̂MIN = 1− (1− rNET )
n. (6.19)

This means that for a given r̂MIN < 1 and an estimated rNET , a node can calculate the number
of necessary transmission attempts (NTX ) as:

NTX = n =





⌈
log(1−r̂MIN )
log(1−rNET )

⌉
if rNET < 1

1 if rNET = 1
(6.20)

By continuously monitoring rNET and adapting the number of packet transmissions NTX , a
node can meet the given end-to-end reliability r̂MIN .

6.4.2 Meeting Latency Requirements: Adapting CI & SL

In this section, we show how a node can meet a given upper end-to-end latency bound when
connected to a router that has constraints on its BLE radio duty cycle.

One reason for such radio duty cycle constraints on the router may be a limited power supply
(e.g., a smartphone as router operating on a battery). Another reason may be that the router
needs to sustain a large number of BLE connections simultaneously, which limits the radio duty
cycle (RDC) available to any individual BLE connection. Independent of the actual reason of the
RDC constraints, the BLE node should require as little BLE radio time on the router as possible
in such a scenario. Therefore, the BLE node needs to adapt the BLE connection interval (CI) and
the BLE slave latency (SL) to meet its latency bounds while limiting its power consumption and
the RDC on the router.

6.4.2.1 Transmitting Data

First, we show how a BLE node can adapt itsCI and SL parameters to transmit data within a given
maximum end-to-end latency (t̂TXMAX

) and a given minimum end-to-end reliability (r̂MIN ) to a
server. To sustain r̂MIN , we split t̂TXMAX

into NTX equal time slots and let the node initiate a
transmission attempt in each of the resulting slots.
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Using the model from Equation 6.4, the node calculates a bound for its BLE connection interval
(CI) that allows to sustain t̂TXMAX

as:

CI ≤ t̂TXMAX
/NTX − tNETMAX

− tCE

nCEMAX
· dDTX/FTXe

. (6.21)

After that, the node calculates its BLE slave latency (SL) as:

SL = nCEMAX
· dDTX/FTXe − 1, (6.22)

to minimize its power consumption. This SL value allows the node to skip connection events,
where only mandatory keep-alive packets would be exchanged (as discussed in Section 2.1.4).

6.4.2.2 Receiving Data

Next, we show how a BLE node can adapt its CI and SL parameters to receive data within a given
maximum end-to-end latency (t̂RXMAX

) and a given minimum end-to-end reliability (r̂MIN ) from
a server. In this scenario, the server is responsible for accounting for any loss over the network
and adapting its transmission attempts. The node only receives the calculated number of necessary
transmission attempts (NRX ) from the server.

Using Equation 6.9, the node calculates its CI bound as:

CI ≤ t̂RXMAX
/NRX − tNETMAX

− tCE

nCEMAX
· dDRX/FRXe+ SL

. (6.23)

Furthermore, the node chooses SL = 0 in this scenario, which limits the RDC of the BLE radio
on the router (as discussed in Section 2.1.4).

6.4.3 Meeting Latency Requirements: Adapting SL Only

In contrast to Section 6.4.2, this section shows how a BLE node can meet given end-to-end re-
quirements when connected to a router without constraints on its RDC.

In this scenario, the router configures the BLE connection to use the smallest possible BLE
connection interval (CI) it can sustain during BLE connection setup. The node uses the configured
CI and only dynamically adapts the BLE slave latency (SL) of the BLE connection.

6.4.3.1 Transmitting Data

Similar to Section 6.4.2.1, the node calculates NTX to meet the given minimum end-to-end relia-
bility (r̂MIN ). Next, the node only needs to calculate SL as:

SL = dITX/CIe − 1, (6.24)

where ITX is the interval at which the application is issuing packet transmissions and CI is the
used BLE connection interval. In this equation, dITX/CIe measures the maximum number of
BLE connection events between two data packet transmissions by the node.
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A node using this SL configuration only needs to wake up when it has data to transmit. During
the remaining connection events, where only keep-alive packets would be exchanged, the node
sleeps to minimize power consumption.

6.4.3.2 Receiving Data

As in the data transmission scenario, the BLE node uses the given CI of the BLE connection and
only adapts the SL to meet the end-to-end latency requirements for receiving packets from the
server. Using Equation 6.9, the node calculates SL as:

SL ≤ t̂RXMAX
/NRX − tNETMAX

− tCE

CI
− nCEMAX

·
⌈
DRX

FRX

⌉
. (6.25)

This SL value allows the node to skip most unnecessary BLE connection events while meeting
the desired t̂RXMAX

latency bound.

6.4.4 Discussion

In some scenarios, a node may need to meet end-to-end latency bounds on transmitting and receiv-
ing packets simultaneously. To do so, the node independently calculates parameters for transmit-
ting (CITX and SLTX ) and receiving (CIRX and SLRX ) using the formulas above. After that,
the node uses a CI =MINIMUM(CITX , CIRX) and a SL =MINIMUM(SLTX , SLRX)
as its BLE connection parameters to meet the given end-to-end requirements.

6.5 Implementation

We implement our proposed adaptation strategies on the Nordic Semiconductor nRF52840
DK [159] using the Zephyr RTOS [217]. While we use the nRF52840 platform for our ex-
periments, our code also runs on all Nordic Semiconductor nRF52 platform variants. Because
we use only standardized BLE functionality, our solutions can easily be ported to other hardware
platforms supporting BLE version 4.1 and above.

We extend Zephyr’s existing IPv6-over-BLE application on the node by our proposed adaptation
mechanisms. After the router has successfully established an IPv6-over-BLE connection with
the node, the node transmits a UDP packet with an IPv6 packet length of 128 bytes to the AWS
cloud server located in Frankfurt, Germany. As soon as the node receives the first valid server
acknowledgment, the node starts to probe tNETMAX

using a probe burst length of LProbe = 10,
a probing interval of IProbe = 1000 s, and an ACK timeout tT imeout = 2000ms. When a first
tNETMAX

estimation is available, the node calculates suitable CI and SL parameters using our
equations in Section 6.4 and configures these parameters using the standardized BLE connection
parameter update process from Section 2.1.4.

We monitor the nCE values of the BLE connection between node and router as shown in Sec-
tion 4.2. Whenever a new nCEf

value is available, the node is notified via a callback and may
update the BLE connection parameters as described in Section 6.4. In our experiments, the BLE
connection does not make use of channel blacklisting and uses the 2M PHY mode of BLE.
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Table 6.3: Delayed packet (delayed) and maximum number of subsequently delayed packets (max. delays) of the
different node configurations under heavy Wi-Fi interference.

Node configuration delayed [%] max. delays
CI = 7.5 ms & SL = 0 0.00 ± 0.00 0
Adapt SL only 0.00 ± 0.00 0
Adapt CI & SL 0.61 ± 0.22 2
CI = 1000 ms & SL = 0 50.64 ± 2.64 25

6.6 Evaluation

In this section, we reuse our testbed described in Section 6.1 to experimentally evaluate our two
proposed adaptation strategies, which we call Adapt CI & SL (proposed in Section 6.4.2) and
Adapt SL only (proposed in Section 6.4.3). We compare our proposed approaches against a
node using the fastest possible static BLE connection parameters (CI = 7.5ms & SL = 0) and a
node using static, power-efficient BLE connection parameters (CI = 1000ms & SL = 0).

6.6.1 Systematic Evaluation

We start by showing that our proposed solutions can cope with dynamic changes in the BLE subnet
and with sudden changes on the external network path. In this systematic evaluation, we focus on
a node sending packets to the server using a wired Internet connection and configure the BLE
nodes to meet a r̂MIN = 99% and a t̂TXMAX

= 1000ms.

6.6.1.1 Changes in the BLE subnet

First, we experimentally investigate how our proposed adaptation strategies can adapt to dynamic
changes in the local BLE subnet, e.g., caused by Wi-Fi interference.

Setup. We reuse our testbed setup described in Section 6.1 and establish a connection between
node and router. After an initial phase of 60 s, we use two different Raspberry Pi 3B devices in
our testbed to create continuous and heavy Wi-Fi interference on two different Wi-Fi channels.

Results. Table 6.3 shows the delayed packets for each of the four different node configuration over
10 min after the Wi-Fi jamming was started. Whenever a UDP packet exceeds the specified end-
to-end latency bound t̂TXMAX

= 1000ms, we count it as delayed. The table shows the overall
number of delayed UDP packets (delayed) during the experiment and the maximum number of
subsequently delayed packets (max. delays).

The data in Table 6.3 shows that both of our adaptation approaches (Adapt SL only and
Adapt CI & SL) can successfully cope with sudden link-layer errors in the BLE subnet. While
the Adapt SL only approach results in no packet delays, also the Adapt CI & SL approach
results in below 1% of all packet transmissions being delayed, and provides a significant improve-
ment compared to a fixed energy-efficient setting.
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Figure 6.4: Measured end-to-end application reliability for different node configurations and configured packet
loss. Adapted from Publication E.

6.6.1.2 Changes in network loss

Next, we measure how our proposed adaptation approaches are able to cope with sudden changes
to the reliability of the external network path (rNET ), e.g., caused by router buffer congestion.

Setup. Similar to Section 6.6.1.1, we establish a connection between node and server in our
testbed. After an initial phase of 60 s, we lower rNET by either 1, 2, 5, 10, 15, or 20% and mea-
sure the resulting end-to-end application reliability, i.e., how many node packets are successfully
received within t̂TXMAX

, for 600 s. In these experiments, we use the standard Traffic Control
(tc) tool with its Network Emulator (netem) of Linux to reproducibly lower rNET . To mimic
symmetric network loss, we use tc on all outgoing traffic on the router and the cloud server.

Results. Figure 6.4 shows the results of our experiments. The data shows that both of our pro-
posed adaptation approaches (Adapt SL only and Adapt CI & SL) can successfully cope
with loss across the external network path by increasing the transmission attempts sent for every
application data packet.

6.6.2 Comparison

In this section, we compare the performance of our proposed adaptation approaches to other node
configurations in different environments.

Setup. We reuse our testbed (see Section 6.1) to measure the end-to-end communication latency
and reliability, as well as the power consumption of nodes. For every experimental run, we pro-
gram a node with one of the different node configurations, establish the connection between node
and router, and initially wait for 60 s before we start our measurements.

Per node configuration, we measure the number of application packets exceeding the speci-
fied end-to-end latency bound (delayed pkts.) and radio duty cycle of the BLE radio on the router
(RDCRouter) caused by the node communication. Furthermore, we measure the current consump-
tion of the BLE node (INode) using our testbed to evaluate the power efficiency of the different
node configurations. During these measurements, all logging and unused peripherals on the BLE
nodes are disabled to minimize power consumption.

In addition to the node configurations from our previous experiments, we also investigate the
behavior of the adaptation approach presented in Section 4.2, which we call NCE only. The
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NCE only approach only reacts to changes in the local BLE subnet and does not account for
the behavior of the external network path. Because the NCE only approach only meets latency
bounds on transmissions from node to router, it is not included in our packet reception experiments.

Experimental environments. To evaluate the performance of our adaptation approaches in dif-
ferent conditions, we use four different experimental environments:

Wired & No Interf. This scenario uses a wired Internet connection with low variability and does
not introduce any Wi-Fi interference into the BLE subnet.

Wired & Wi-Fi Interf. This scenario uses the same wired Internet connection as above, but in-
troduces continuous and heavy Wi-Fi interference on two different Wi-Fi channels in the BLE
subnet.

Cellular & No Interf. This scenario uses a 4G connection to connect the router to the Internet
and does not introduce any Wi-Fi interference into the BLE subnet. As shown in Section 6.1, the
cellular Internet connection experiences longer and more varying delays across the network path.

Cellular & Wi-Fi Interf. This scenario uses the 4G Internet connection and introduces continuous
Wi-Fi interference in the BLE subnet. This leads to delays in the BLE subnet, caused by link-layer
retransmissions due to Wi-Fi, and on the external network path, caused by the cellular connection.

Results. Figure 6.5 shows the performance of our proposed adaptive approaches trying to meet a
t̂TXMAX

= 1000ms in our four different experimental environments. In every subfigure in Fig-
ure 6.5 one adaptive approach is compared to the fastest possible static BLE connection parameters
(CI = 7.5ms& SL = 0) and energy-efficient static BLE connection parameters (CI = 1000ms
& SL = 0). Figure 6.5(a) shows that our proposed Adapt SL only approach successfully
meets the specified end-to-end latency bound, resulting in no delayed or lost packets, at the cost
of a slightly increased node current consumption (INode) compared to the fixed, energy-efficient
setting. As expected and discussed in Section 6.4.3, the Adapt SL only approach results in a
high RDC at the router (RDCRouter), which may not be suitable for some applications. Applica-
tions that need to limit the routers RDC (RDCRouter) can use our Adapt CI & SL approach
to successfully meet the specified end-to-end latency bound while also limiting the node’s current
consumption (INode), as shown by the data in Figure 6.5(b). Furthermore, we see in Figure 6.5
that our Adapt SL only and Adapt CI & SL approaches significantly outperform the NCE
only approach in meeting t̂TXMAX

, by at least 100%.

Figure 6.6 shows the performance of our proposed adaptive approaches trying to meet a
t̂RXMAX

= 1000ms in our four different experimental environments. Like in Figure 6.5, each
subfigure in Figure 6.6 shows one adaptive approach compared to the fixed CI = 7.5ms &
SL = 0 and CI = 1000ms & SL = 0 configurations. The data in Figure 6.6 shows that both
of our proposed adaptation approaches successfully meet the specified end-to-end latency bound
while limiting the current consumption of the node (INode). As expected, our Adapt SL only
approach (shown in Figure 6.6(a)) results in less delayed packets than the Adapt CI & SL
approach (shown in Figure 6.6(b)) at the cost of a significantly higher RDCRouter.

Figure 6.7 and 6.8 show an overview of the performance of all fixed and adaptive node config-
urations when transmitting or receiving data, respectively. Using the same data as Figure 6.5 and
6.6, these two figures provide a comparison of all node configurations next to each other. Again,
we can clearly see that our adaptive approaches drastically improve communication performance
and successfully meet the given end-to-end latency requirements.
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(a) Performance of our Adapt SL only approach.
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(b) Performance of our Adapt CI & SL approach.
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(c) Performance of our NCE only approach.

Figure 6.5: Detailed performance of our proposed adaptation approaches for meeting t̂TXMAX = 1000ms on
transmitting packets with a length of 128 bytes to a cloud server. Every subfigure shows the perfor-
mance of a single adaptation approach in comparison to the fastest possible static BLE connection
parameter setting (CI = 7.5ms & SL = 0) and to a static, power-efficient BLE connection param-
eter setting (CI = 1000ms & SL = 0).
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(a) Performance of our Adapt SL only approach.
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(b) Performance of our Adapt CI & SL approach.

Figure 6.6: Detailed performance of our proposed adaptation approaches for meeting t̂RXMAX = 1000ms on
receiving packets with a length of 128 bytes from a cloud server. Every subfigure shows the perfor-
mance of a single adaptation approach in comparison to the fastest possible static BLE connection
parameter setting (CI = 7.5ms & SL = 0) and to a static, power-efficient BLE connection param-
eter setting (CI = 1000ms & SL = 0).
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Figure 6.7: Performance overview of fixed and adaptive node configurations for meeting t̂TXMAX = 1000ms
on transmitting packets with a length of 128 bytes to a cloud server. Adapted from Publication E.
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Figure 6.8: Performance overview of fixed and adaptive node configurations for meeting t̂RXMAX = 1000ms
on receiving packets with a length of 128 bytes from a cloud server. Adapted from Publication E.
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6.7 Summary

In this chapter, we have shown how BLE-based IoT devices can meet given end-to-end communi-
cation requirements when exchanging data with a cloud server. Towards this goal, we have derived
a new end-to-end BLE model, have designed an end-to-end loss and delay estimation approach,
and have shown how BLE nodes can meet a given minimum end-to-end reliability and a given
maximum end-to-end latency, even in harsh environments experiencing dynamic changes.

Because our solutions use only standardized BLE functionality and adhere to the end-to-end
principle of IP, they can easily be used by existing and future BLE-based IoT applications to
improve their performance.
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BLE communication is increasingly used in safety- and time-critical application domains, such as
industrial monitoring systems and smart healthcare, due to its ultra-low power consumption and
its wide availability in existing consumer devices. While BLE devices operating in such domains
need to limit their power consumption to reach a suitable battery lifetime, these devices also need
to sustain stringent communication requirements, such as a given minimum reliability or a given
maximum latency, to ensure a safe operation.

Sustaining such communication requirements on battery-powered BLE devices is difficult be-
cause these devices need to cope with persistent or transient communication problems (e.g., exter-
nal radio interference and fading effects in the local BLE network, or sudden loss and delays over
the Internet) while minimizing the power draw of the wireless communication. This dissertation
tackles this problem and shows how to create dependable BLE applications that have a low power
consumption and need to meet given end-to-end communication requirements.

7.1 Contributions

Towards this goal, we have developed three main contributions in this thesis.

Supporting time-critical data exchange over BLE connections. First, we show how BLE de-
vices can reliably exchange data within a given latency bound over a BLE connection in real-world
application environments, where devices may experience external radio interference, weak signal
strength, or fading effects. To achieve time-critical communication, we design three novel BLE
adaptation mechanisms that allow off-the-shelf BLE devices to optimize their communication per-
formance at runtime. Our BLE channel management significantly increases the link-layer reliabil-
ity of a BLE connection by passively monitoring the quality of individual BLE data channels and
by selecting only channels with high quality for data exchange. Our BLE PHY mode adaptation
dynamically chooses the most suitable PHY mode of a BLE connection to sustain a given mini-
mum link-layer reliability while limiting the power consumption of a BLE device. Devices using
our BLE connection parameter adaptation passively monitor the delay of individual BLE trans-
missions and dynamically adapt the used BLE connection parameters to sustain a given maximum
transmission latency while minimizing power consumption.

Connecting BLE devices to the IoT using IPv6. Second, we present BLEach, the first open-
source, full-fledged IPv6-over-BLE communication stack for constrained devices. BLE devices
using BLEach can directly exchange IPv6 packets with any other IP-compliant device on the
Internet, without requiring a gateway to translate standard GATT-based BLE data into IPv6 pack-
ets. Furthermore, BLEach exposes the key parameters of IPv6 over BLE, allowing to optimize
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IPv6-over-BLE communication performance at runtime. In this dissertation, we use the exposed
parameters to support multiple IPv6 traffic flows over IPv6 over BLE, each with its own QoS level.

Meeting end-to-end requirements in BLE-based IoT applications. Finally, we show how BLE
devices can communicate with a server on the Internet within given end-to-end reliability and la-
tency bounds. Using our novel end-to-end model, BLE devices can capture and cope with any
communication problems across the whole network path, such as external interference in the lo-
cal BLE subnet or sudden packet loss or delays on the Internet. Our approach is fully compliant
with the end-to-end principle of IP and allows BLE nodes to meet given end-to-end communica-
tion requirements while minimizing their power consumption, independent of the used Internet
connection or the RF environment in the local BLE subnet.

All of our contributions are fully compliant to the BLE specification [24] and can be imple-
mented on off-the-shelf BLE devices to significantly improve their communication performance.

7.2 Future Work

The focus of this dissertation is to enable low-power, reliable, and time-critical IoT applications
based on BLE. Although the work in this thesis presents a significant step towards this goal, it has
several limitations and possibilities for optimization that may be addressed in future work. Some
of the future improvements to the work in this thesis may be:

Providing an all-in-one solution. Although all our improvements to connection-based BLE are
complementary with each other, we have experimentally evaluated each of our individual improve-
ment on its own. This has allowed us to accurately measure the communication improvements
caused by any proposed contribution. However, a BLE node may use all proposed solutions in
combination, e.g., our end-to-end work in combination with our BLE channel management and
PHY mode adaptation, to significantly improve its performance even further.

Supporting upcoming BLE features. At the time of writing this thesis, the specifications of
BLE version 5.2 [26] and version 5.3 [27] have already been publicly released. These versions
provide additional BLE features, such as ISO channels or a faster BLE parameter update, that
significantly improve the reliability and real-time capabilities of BLE communication, as discussed
in Section 2.1. Unfortunately, the currently available BLE devices have no or only limited support
for these new BLE features.

Nevertheless, our proposed solutions are fully compliant to these newer BLE versions and future
work may combine the work of this dissertation with this new BLE functionality. For example,
BLE nodes may use BLE ISO channels instead of ordinary connection-based BLE to exchange
data with a router in real-time. BLE devices may use the faster BLE parameter update in combi-
nation with our adaptation approaches to react to changes in the network even faster. Compared to
the existing BLE parameter update procedure that uses a fixed adaptation period of 6 connection
events, the faster BLE parameter update procedure adapts the BLE connection parameters as fast
as possible (e.g., typically within 2 connection events). Nodes may use our link quality estimation
approach to dynamically adapt their transmission power - a feature added with BLE version 5.2 -
to further improve their energy efficiency and reliability.

Migrating solutions to multi-hop BLE networks. This dissertation focuses on optimizing the
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performance of nodes operating in single-hop BLE networks. Nevertheless, some of our contri-
butions may be used by multi-hop BLE networks, such as BLE mesh networks or networks based
on concurrent transmissions. For example, multi-hop BLE networks may use our BLE channel
management to improve the link-layer reliability of communication. Moreover, nodes may use
our BLE PHY mode adaptation to dynamically adapt the used PHY mode of individual links or
on a network level. Edge nodes may use our end-to-end delay estimation approach to measure and
control their transmission delay across large-scale BLE networks.

Combining our adaptation approaches with application-layer improvements. In this disser-
tation, we have presented how to optimize connection-based BLE communication via link-layer
improvements. Future research may combine our optimizations with application-layer improve-
ments used in state-of-the-art Tactile Internet solutions, such as data reduction, data compression,
or AI-based content caching. Combining our improvements with application-layer optimizations
will be another significant step towards highly energy-efficient, reliable, and real-time IoT appli-
cations based on BLE.
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ABSTRACT
The ability to �ne-tune communication performance is key to meet-
ing the requirements of Internet of Things applications. While years
of low-power wireless research now allows developers to fully opti-
mize the performance of applications built on top of IEEE 802.15.4,
this has not yet happened with Bluetooth Low Energy (BLE), whose
networking performance is still largely unexplored and whose po-
tential is not yet fully exploited. Indeed, BLE radios are often treated
as a black box, because they are meant to only execute data transfer
commands and manufacturers build BLE soft devices with closed-
source network stacks. As a result, developers working with BLE
cannot modify the radio driver or the link-layer, and hence have no
direct control over radio duty cycling and packet re-transmissions.

To tackle these challenges, we analyze and model how speci�c
BLE features can be used to �ne-tune communication performance
at run-time. We further present the design and implementation of
BLEach, an IPv6-over-BLE stack that exposes tuning knobs for con-
trolling the energy usage and timeliness of BLE transmissions and
that allows to enforce a variety of quality-of-service (QoS) metrics.
We design three exemplary modules for BLEach providing novel
BLE functionality: adaptive radio duty cycling, IPv6-over-BLE traf-
�c prioritization and multiplexing, as well as indirect link-quality
monitoring. We integrate BLEach into Contiki and release its code,
thus addressing the lack of a full-�edged open-source IPv6-over-
BLE stack. Experiments demonstrate that BLEach is lightweight,
interoperable with other standard-compliant devices, and reduces
energy costs by up to 50 % while giving QoS guarantees by quickly
adapting to changes in interference, tra�c priority, and tra�c load.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-
tolerant systems and networks; • Networks → Network proto-
cols; Network performance evaluation;
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1 INTRODUCTION
Bluetooth Low Energy (BLE) is a low-power wireless technology
that has gained popularity in recent years due to its wide adoption
in consumer devices, such as smartphones, wearables, and laptops.
These devices can act as gateways, seamlessly integrating “smart
objects” into the Internet of Things (IoT). This way, BLE supports
a range of powerful applications, from home entertainment and
automation to health-care monitoring and �tness tracking.
Challenges. Approved in October 2015, RFC 7668 describes how
IPv6 packets can be exchanged using BLE connections (IPv6 over
BLE) [24], allowing any “smart object” supporting BLE to commu-
nicate with any other IPv6-enabled device using headless routers.
This has paved the way for an even richer set of applications using
BLE technology. It also represents a signi�cant leap in IoT research,
where for almost a decade IPv6 support for low-power wireless
networks was limited to IPv6 over IEEE 802.15.4 (6LoWPAN).

Unfortunately, even two years later, little is known about how
to optimize BLE’s performance and how to unveil its full potential,
especially in combination with IPv6. Most BLE works found in the
literature are based on the connection-less mode, which does not
support IPv6. Moreover, BLE radios are often treated as a black box
for two reasons. First, they are typically built as drop-in communi-
cation peripherals attached to a host processor that simply executes
data transfer commands [37]. Second, manufacturers often build
BLE soft devices with closed-source network stacks provided as
libraries in binary format [35]. As a result, developers cannot mod-
ify the BLE radio driver and link-layer implementations, and hence
have no explicit control over link-layer (re-)transmissions and radio
duty cycling, which largely determine application performance.

This state of a�airs represents a signi�cant problem, as the lower
layers in the protocol stack must be tuned at runtime to meet the
di�erent requirements of IoT applications operating in dynamic
environments [4, 14, 36, 38]. For instance, some applications may
need to minimize energy consumption for economic viability, while
still ensuring timely delivery of alarm messages in response to, for
example, deteriorating vital signs of a patient [4]. The problem is
further exacerbated by the lack of open-source stacks supporting
IPv6 and BLE connection-based communication [41].
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Thus, there is a need to gain a deeper understanding of how
BLE features can be used to �ne-tune communication performance.
Designing an IPv6-over-BLE stack that exposes tuning knobs to con-
trol the energy expenditure and timeliness of BLE communications
and that provides di�erent quality-of-service (QoS) levels would
greatly improve the performance of IoT applications using BLE.
Contributions. In this paper, we analyze BLE connection-based
transmissions and model their energy consumption and latency as
functions of key BLE parameters. We further present BLEach, the
�rst full-�edged IPv6-over-BLE stack that exposes these parameters
as tuning knobs to optimize the performance of single-hop BLE.

BLEach retains the intended simplicity of the BLE standard in-
cluding its focus on single-hop networking, while supporting IPv6
functionality with minimal processing and memory overhead. Fully
interoperable with other IPv6-compliant devices, BLEach is agnos-
tic to the hardware platform and the application; that is, it supports
single- and dual-core platforms through minimal changes to the
lower layers, while completely hiding the platform speci�cs from
the application. BLEach’s modular design enables alternative imple-
mentations of BLE features or adding completely new functionality
to improve performance. To show its capabilities, we enrich BLEach
with three exemplary modules: the �rst one implementing a duty-
cycling strategy that dynamically adapts BLE parameters to tra�c
load, the second one performing IPv6-over-BLE tra�c prioritization
and multiplexing, and the third one indirectly monitoring the link
quality at run-time for black- and whitelisting of radio channels.

We integrate BLEach into Contiki and release its source code
(http://www.iti.tugraz.at/BLEach), which makes it the �rst open-
source IPv6-over-BLE stack supporting both resource-constrained
master and slave devices. We thus �ll an important gap identi�ed
by the research community [41], as further discussed in Sec. 7.

Experiments with BLEach on the popular TI CC2650 platform
reveal that (i) BLEach is interoperable with RFC-compliant bor-
der routers, (ii) its minimal processing overhead and low memory
footprint make it suitable for constrained embedded IoT devices,
and (iii) the three exemplary modules we have developed signi�-
cantly increase BLE’s resilience and e�ciency. Moreover, we com-
pare the performance of BLEach and Contiki’s default IPv6-over-
IEEE 802.15.4 stack when running the same exemplary application
on top, showing that BLEach is more energy e�cient. We also com-
pare the communication range achieved by BLE and IEEE 802.15.4
on the same platform outdoors, and are the �rst experimental study
highlighting that BLE achieves a signi�cantly lower range than
IEEE 802.15.4 regardless of the employed transmission power.

In summary, this paper makes the following contributions:
• We analyze BLE’s connection-based communication and

model how speci�c BLE features and parameters can be
used to �ne-tune communication performance.

• We present BLEach, the �rst full-�edged IPv6-over-BLE
stack that exposes these parameters to control the energy
expenditure and timeliness of BLE communications.

• We show how BLEach empowers IoT research by enriching
its architecture with novel features: a duty-cycling strat-
egy that adapts BLE parameters to tra�c load, QoS-aware
BLE tra�c prioritization and multiplexing, and adaptive
channel blacklisting using indirect link-quality monitoring.

BLE PHY Layer

BLE Link Layer

BLE L2CAP

ATT 6LoWPAN for BLE

GATT IPv6

IPSS TCP / UDP / …

Application

"Black Box" 
BLE Controller

BLE Host

Host Controller 
Interface

(HCI)

Figure 1: BLE architecture as speci�ed by RFC 7668 [24].

• We compare BLEach to Contiki’s default IPv6-over-
IEEE 802.15.4 stack on the same platform and show that
BLEach is more energy e�cient, although BLE achieves a
lower communication range than IEEE 802.15.4.

2 CHALLENGES OF IPV6 OVER BLE
RFC 7668 [24] speci�es how BLE devices can communicate with any
other IPv6-enabled device using headless routers. To exchange IPv6
packets, BLE devices form star networks with a central node, called
master, acting as gateway to the Internet [24]. After establishing
a connection with the master, BLE devices perform IPv6 neighbor
discovery according to RFC 6775 [45], carry out IPv6 address auto-
con�guration according to RFC 7136 [3], and exchange compressed
IPv6 packets with the IPv6 pre�x advertised by the master. Both the
above standards and current BLE platforms pose several challenges
that must be addressed in the design of an IPv6-over-BLE stack.
Support for connection-based mode. BLE supports two modes
of communication: connection-less and connection-based. Most BLE-
based IoT applications today use the connection-less mode [18, 25]:
devices are either advertisers sending unidirectional broadcast mes-
sages, or scanners reading and processing the messages sent by ad-
vertisers. Connection-less communication is simple and supported
by most existing IoT systems. IPv6 over BLE, instead, requires de-
vices to communicate bidirectionally using the connection-based
mode: devices �rst establish a connection to a master using the
advertisement channels, and then exchange data during periodic
connection events. However, BLE’s connection-based mode is un-
derexplored and not well supported by existing IoT systems.
Nature of BLE controllers. The BLE architecture consists of two
main components, controller and host, which exchange commands
via the Host Controller Interface (HCI) [24], as shown in Fig. 1. To
simplify application development, the controller implementing the
lowest layers of the stack acts as a black box to the upper layers: it
autonomously handles link-layer (re-)transmissions and acknowl-
edgments, and manages connection events according to a set of
parameters passed through the HCI interface. Most BLE controllers
are also closed source and not programmable, so developers can-
not modify their operation or implement functionality that goes
beyond the BLE standard. For example, the nRF52 only provides a
proprietary HCI library to support the BLE controller running on
the main processor, without the possibility to access its internals.
Other platforms, like the TI CC2650 with its separate BLE core, pro-
vide a vendor-speci�c radio API that developers use to implement
correct communication management. Although implementing such
open BLE controllers is more complex, it also allows to accurately
�ne-tune and extend the functionality of the BLE radio.
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Figure 2: Example of a BLE connection-based data exchange between a slave and a master using a slave latency of 1.

Temporal decoupling from upper layers. Using the connection-
less mode, a higher-layer protocol or the application can turn on the
radio and transmit packets at any time. Using the connection-based
mode, however, it is only possible to �ll the radio bu�er and wait for
the BLE controller to transmit the packet(s) during the next connec-
tion event. Hence, in connection-based mode, packet transmissions
are temporally decoupled from the upper layers. Moreover, there is
no immediate feedback on ongoing transmissions.
Parametrization of connections. The only interface that devel-
opers have to control connection-based communication is a limited
set of connection parameters passed through the HCI interface to
the BLE controller. The set of connection parameters is traditionally
chosen by the master, which informs its slaves about the parame-
ters to be used for communication. How to select these connection
parameters to meet certain performance goals is an open problem.
Runtime adaptation. Most BLE devices are slaves, communicat-
ing with a more powerful master acting as a gateway to the Internet,
such as an embedded PC or smartphone. Such gateways use de-
fault parameters optimized for peak tra�c load; constrained slaves
using these parameters quickly drain their batteries. To avoid this
problem, the BLE standard foresees the possibility to negotiate con-
nection parameters: slave devices can ask the master to select other
parameters that better �t their constraints and requirements. If
the master provides this feature, slaves should not only compute
optimized parameters and communicate them to the master, but
also adapt the parameters at runtime in response to changes in traf-
�c load. Although similar ideas have been explored in the context
of IEEE 802.15.4 [30, 46], it is unclear which parameters are most
relevant for BLE performance and how to determine optimized
values for a set of parameters.
QoS support. IPv6-enabled BLE devices can exchange data with
any other IPv6-enabled device, and hence likely experience di�erent
kinds of tra�c (e.g., periodic tra�c due to sensing and sporadic
ICMP tra�c from the border router or other peer devices on the
Internet). It is thus important to give these devices the ability to, for
example, prioritize tra�c and support di�erent QoS levels via tra�c
prioritization and multiplexing. Such features are often required in
practice but not prescribed by the standard. Conversely, IPv6 over
BLE prescribes the use of LE Credit-Based Flow Control, whereby a
device grants credits to its peer to prevent bu�er over�ows during
a connection [6]. A practical IPv6-over-BLE stack must adhere to
the standard while allowing for additional features to be added.

3 UNDERSTANDING CONNECTION-BASED
BLE COMMUNICATION

To address the �rst �ve challenges mentioned above, we analyze
BLE’s connection-based mode in detail. We describe the sequence
of operations during connection-based communication, discuss the
impact of the most important parameters on BLE’s performance,
and derive analytical expressions that formalize these relationships.

3.1 Anatomy of Connection Events
BLE’s connection-based mode provides bidirectional data transfer
between a slave and a master. As shown in Fig. 2, after a setup phase,
communication occurs in non-overlapping slots called connection
events. The time between the start of two consecutive connection
events, the connection interval conn_int , is �xed. At the beginning
of a connection event, a data channel is selected according to the
adaptive frequency hopping (AFH) algorithm.1 Then master and
slave alternately exchange link-layer packets, which are separated
by the mandatory Inter Frame Spacing (IFS) of length tI F S .

The duration of a connection event tc depends on the number
and the size of the exchanged link-layer packets. Master and slave
may transmit several packets or simply keep the connection alive
by exchanging only one link-layer packet each that indicates that
no more transmissions take place in the current connection event.
When the data exchange is completed, both devices turn o� their
radios until the next connection event starts. Master and slave
can send at most F bytes each during a connection event. If they
reach this connection capacity, they turn o� the radio and resume
communication at the beginning of the next connection event.

Fig. 2 shows an example where a slave transmits six packets to
the master. Four of them let the slave reach its connection capacity
F in connection eventC0, so the remaining two are sent during con-
nection event C1. In every connection event, the master transmits
the �rst packet. In the example of Fig. 2, the master sends packets
with an empty payload as it has no data to transmit, while the slave
sends packets with maximum payload. As a result, the length of a
transmission by the master tM is shorter than that of the slave tS .

In connection event C2 the slave has no more data to send, yet a
connection event should contain at least one packet exchange. In
our example, the master transmits in C2 but the slave keeps silent.
This situation is foreseen by the BLE standard: a slave may skip SL
consecutive connection events, where SL is called slave latency. In

1BLE uses 40 channels in the unlicensed 2.4 GHz band. Three advertisement channels
are reserved for unidirectional broadcast (connection-less mode); the remaining 37
data channels are only used for bidirectional unicast (connection-based mode).
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our example, we have SL = 1, so the slave may decide to interact
with the master only on every second connection event. During
connection event C3 both nodes again exchange one packet with
an empty payload and turn o� their radios after tK seconds.

BLE’s connection-based mode automatically handles packet ac-
knowledgments (ACKs) and link-layer �ow control using a 1-bit
sequence number and 1-bit ACK �eld in the frame header. In case of
unreliable links, the supervision timeout ST is used to detect the loss
of BLE links, specifying the maximum time between two received
packets before the connection is marked as lost. If ST �res, the
connection is canceled, and slave and master return to advertising
and scanning mode, respectively. To ensure reliable communica-
tion, BLE uses the AFH algorithm, which selects only one of the
enabled data channels in the channel map Cmap provided as input.
By changing Cmap , a master can adaptively blacklist or whitelist
data channels (e.g., to evade interference from co-located networks).

3.2 Relevant Connection Parameters
Table 1 lists the most important BLE connection parameters. BLEach
exposes all of them as tuning knobs (see Sec. 4), yet three deeply
impact BLE’s energy consumption and communication latency:

• A short connection interval conn_int increases throughput
and shortens latency at the cost of higher energy consump-
tion. A long conn_int has the opposite e�ect.

• A high slave latency SL reduces energy consumption, but
also reduces throughput and increases latency of master-
to-slave data exchange as the slave is free to choose during
which connection event to interact with the master.
• The higher the connection capacity F , the lower the energy

consumption when transmitting large data packets as less
time is spent for pre- and post-processing (tpr e and tpost ).

Next, we formalize these observations by deriving an analytical
model that expresses BLE’s energy consumption and communica-
tion latency as functions of the three parameters. This model can be
used to �nd parameter values that meet given performance goals.

3.3 Modeling the Impact of BLE Connection
Parameters on Network Performance

Starting from an entire data transfer, we move on to individual con-
nection events, and �nally look at single link-layer transmissions.
Data transfer. We are interested in the time and energy needed
to send D bytes from slave to master. We focus on the slave as
the master is frequently recharged or wall-powered. We neglect
packet loss, which keeps our expressions simple without sacri�cing
accuracy, as long as AFH �nds a high-quality channel (see Sec. 6).
Extending our models to account for packet loss is beyond the scope
of this paper, but existing approaches can be used [46].

We start with latency. As data may arrive at any time with respect
to scheduled connection events, the entire data transfer takes

tavg = (nF − 1/2) · conn_int + tc (1)

on average, where nF is the number of connection events, each
with connection capacity F , needed to send D bytes and given by

nF = dD/F e (2)

Table 1: BLE parameters exposed in BLEach as tuning knobs.
Parameter name Possible values
Connection interval conn_int [7.5–4000] ms in 1.25 ms steps
Slave latency SL [0–500] connection intervals
Connection capacity F hardware-speci�c no. of bytes
Channel map Cmap bitmask with 37 entries

and tc is the time needed to exchange the remaining data during
the last connection event of the data transfer. In the worst case, the
data arrives just after the start of a connection event, which leads
to the following upper bound on the time needed to send D bytes

tmax = nF · conn_int + tF (3)

Here we assume that the slave transmits the maximum number of
bytes F also in the last connection event, which takes tF seconds.

We now turn to the energy consumed over a time interval tD
while sending D bytes of data; tD may be the sampling interval in
an IoT application. As tD can be longer than the time needed for
the data transfer, we not only need to account for energy ED spent
on exchanging data, but also for energy EM spent on keep-alive
messages, for energy EC spent during skipped connection events
if the slave latency SL > 0, and for energy EI spent in idle mode.
Thus, the total energy consumed is the sum of these components

E = ED + EM + EC + EI (4)

The energy spent on exchanging actual data can be expressed as

ED =

{
D
F · EF , if D mod F = 0⌊ D

F
⌋ · EF + (D mod F ) · EF−EK

F + EK , otherwise
(5)

where EF is the energy for exchanging the maximum of F bytes
during a connection event and EK is the energy for exchanging a
packet with zero payload, such as a keep-alive message. The energy
for exchanging keep-alive messages is given by

EM = nK · EK =

⌊(⌊
tD

conn_int

⌋
− nF

)
1

1 + SL

⌋
· EK (6)

where nK is the number of connection events in which a keep-alive
message is exchanged, which can only happen when no actual data
transfer takes place. If SL > 0, a slave may also skip connection
events; however, it still wakes up to check if there are data to be
transmitted. Knowing that one such check consumes ES , we can
express the energy for nS skipped connection events as

EC = nS · ES =

(⌊
tD

conn_int

⌋
− nF − nK

)
· ES (7)

During the remaining time, a slave is in idle mode consuming

EI = [tD − (nF · tF + nK · tK )] · PI (8)

of energy, where tF is the duration of a connection event wherein
the slave sends the maximum of F bytes, tK is the duration of a
connection event wherein the slave sends a keep-alive message,
and PI is the power draw when the slave resides in idle mode.
Connection events. Fig. 3 shows power draw and packet trans-
missions of a slave during a BLE connection event, recorded using
a mixed-signal oscilloscope on the TI CC2650. The slave sends
multiple link-layer packets to the master for a total of 256 bytes.
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Figure 3: Power draw, packet transmissions, and gaps between packets during a BLE connection event, recorded using a mixed-
signal oscilloscope on a TI CC2650 platform that acts as the slave and communicates with a master in connection-based mode.

Table 2: Power, time, and energy measured on the TI CC2650.
Ppr e 16.024 ± 0.28mW tpre 1.780 ± 0.001ms

PM 28.090 ± 0.27mW tM 0.080 ± 0.000ms

PS 30.484 ± 0.44mW tS 0.296 ± 0.000ms

PI F S 23.091 ± 0.30mW tI F S 0.150 ± 0.000ms

Ppost 20.245 ± 0.48mW tpost 0.363 ± 0.001ms

PI 0.939 ± 0.02mW ES 4.751 ± 0.126 µJ

After a pre-processing phase, whose duration tpre is hardware
speci�c, the master sends its �rst packet M1. The slave replies with
its �rst packet S1 after the mandatory IFS of �xed duration tIFS . The
packet exchange continues until master and slave have no more data
to send or they have reached their connection capacity F . A post-
processing phase with hardware-speci�c duration tpost completes
the connection event. Thus, the time spent by master and slave in
a generic connection event with n packet exchanges is given by

tc = tpre + tpost + (2n − 1) · tIFS +

n∑
i=1

(
tMi + tSi

)
(9)

where tMi and tSi represent the times needed by master and slave
to transmit their packets M1, . . . ,Mn and S1, . . . , Sn , respectively.
Using (9), we can obtain tF by letting the number and size of these
packets correspond to the connection capacity F , and tK by letting
M1 and S1 be (keep-alive) packets with zero payload.

Similarly, we obtain the energy consumed by a slave in a generic
connection event by multiplying each individual time in (9) with
the respective power draw as follows

Ec = Epre + Epost + (2n − 1) · EIFS +

n∑
i=1

(
EMi + ESi

)
(10)

Table 2 lists the individual times, power draws, and energy con-
sumption to instantiate (9) and (10) for the TI CC2650. Using (10),
we can also obtain EF and EK as described above for tF and tK .
To calibrate our model for a di�erent platform, we only need to
measure the parameters listed in Table 2.
Link-layer transmissions. BLE’s physical- and link-layer spec-
i�cation prescribes a common structure for all packets [5]. Each
packet consists of a header and a payload. The header has a 1-byte
preamble, a 4-byte access address, a 2-byte link-layer header, and
a 3-byte CRC, which amounts to a link-layer header overhead of

OLL = 10 bytes. The payload size of a link-layer packet PLL ranges
between 0 and 27 bytes (or higher depending on the BLE version2).
The transmit bitrate in BLE is RLL = 1 Mbit/s = 125 kB/s3. Thus,
the time needed to transmit a link-layer packet is

tLL = (OLL + PLL)/RLL (11)
The energy needed to transmit a link-layer packet is simply

ELL = PS · tLL (12)
where PS is the power draw in transmit mode and, for example,
given in Table 2 for the TI CC2650 at 0 dBm transmit power.

4 BLEACH: DESIGN AND IMPLEMENTATION
We present BLEach, a modular open-source IPv6-over-BLE stack
that exposes key features and parameters allowing to control the
energy consumption and timeliness of communication in single-hop
BLE networks in accordance with RFC 7668 [24]. BLEach’s design
is compatible with the architecture of Contiki [17], a widely used
operating system for embedded IoT devices with IPv6 connectivity.

Next, we describe BLEach’s modular design and highlight the
main di�erences to Contiki’s IPv6-over-IEEE 802.15.4 stack, discuss
how we integrate BLEach into the Contiki architecture, and describe
an implementation of BLEach for the popular TI CC2650 platform.

4.1 Design
Fig. 4 shows the architecture of BLEach. Since RFC 7668 does not
foresee any changes to the network (i.e., IPv6) and transport layers,
only the lowest four layers are speci�cally designed to support BLE.

A key challenge in designing BLEach is the nature of BLE con-
trollers. As described in Sec. 2, they temporally decouple radio
processing from higher-layer protocols and applications by auto-
matically handling packet (re-)transmissions and radio duty cycling.
This leads to a number of fundamental di�erences compared with
existing network stack architectures for IoT devices.
BLE link and PHY layer. The lowest layer in the BLEach stack
is the BLE link and PHY layer, which implements all the services
provided by a BLE controller and exposes to the upper layers an in-
terface to create BLE connections, to append packets to the queue of
outgoing packets, and to get noti�ed about any incoming packets. It
2Up to 27 and 251 bytes of payload are supported by BLE v4.1 and v4.2, respectively.
3BLE v5.0, introduced in December 2016, o�ers an additional PHY mode that supports
higher transmit bitrate, longer range, higher output power, and periodic advertising.
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Figure 4: Architecture of BLEach and corresponding layers
in Contiki’s IPv6-over-IEEE 802.15.4 stack.

is the only hardware-speci�c layer within BLEach, and hence needs
to accommodate both closed-source and open BLE controllers.

Both types of controllers implement services such as schedul-
ing link-layer transmissions, managing data bu�ers, and notifying
the upper layers upon packet reception. While closed-source con-
trollers hide the implementation of these services and provide the
standardized HCI to issue corresponding BLE commands, open con-
trollers require the developer to implement the services, including
the (re-)transmission of link-layer packets and the AFH algorithm,
using the vendor-speci�c radio API. Thus, the implementation of
the BLE link and PHY layer is more complex for open BLE con-
trollers, but it also allows to accurately �ne-tune and modify the
functionality of the BLE radio. As an example, we describe in Sec. 5.3
the implementation of an indirect link-quality monitoring approach
for the TI CC2650 BLE controller that blacklists interfered channels
and increases the system’s timeliness and energy e�ciency.
Parametrization layer. On top of the BLE link and PHY layer sits
the parametrization layer. It selects and adapts the connection mode
used for communication and the parameters to be used by the BLE
controller to schedule transmissions at run-time. In particular, by
changing the connection parameters, this layer is also able to indi-
rectly duty cycle the radio, which is a major di�erence to existing
radio-duty-cycling techniques used in IEEE 802.15.4 stacks [16, 34].

The selection of connection parameters strongly a�ects system
performance. The parametrization layer allows developers to use
these parameters to in�uence the timeliness and energy e�ciency
of BLE. For example, rather than using the default parameters set
by the master, a slave can compute an optimized parameter set ac-
cording to device constraints and application needs using the model
presented in Sec. 3.3 and negotiate it with the master. We present in
Sec. 5.1 an implementation of an adaptive parametrization layer that
dynamically changes the connection interval at run-time, showing
that it can decrease the energy cost of a device by a factor of two.

Furthermore, this layer could be used to implement aggressive
duty-cycling strategies that temporarily terminate a BLE connection
and resume it at a negotiated point in time so as to signi�cantly
improve the performance of mostly-o� sensing devices [9, 11]. The
parametrization layer can also act as a building block to create IPv6-
over-BLE mesh networks using connection-less BLE by scheduling
the transmission of advertisements embedding IPv6 tra�c and
scanning for advertisements embedding a response.
L2CAP layer. According to RFC 7668 [24], the L2CAP layer has
two main functions: fragmentation of IPv6 packets and prevention
of bu�er over�ows by means of LE credit-based �ow control. The
fragmentation and reassembly mechanism of L2CAP makes it pos-
sible to exchange large IPv6 packets over constrained BLE links
by fragmenting them into smaller chunks called L2CAP fragments
whose size is upper-bounded by the connection capacity F .

L2CAP also creates logical channels between two peer devices
and makes use of credits to control the �ow of fragments and avoid
bu�er over�ows. Speci�cally, both devices grant their peer a given
amount of credits for communication. Each time a fragment is sent,
the sender decreases its credit count by one. As soon as a device has
no more credits left, it is no longer allowed to send fragments on
that speci�c L2CAP channel. A device may grant its peer additional
credits anytime using a separate L2CAP signaling channel.

The LE credit-based �ow control mode can be used to provide
QoS mechanisms that enhance the simple bu�er over�ow preven-
tion de�ned by the standard. We present in Sec. 5.2 an implemen-
tation of an L2CAP layer allowing to prioritize at run-time either
speci�c slaves or speci�c IPv6 tra�c from a given node.
IPv6 compression layer. To improve the e�ciency of IPv6 com-
munications, RFC 7668 foresees the use of IPv6 header compression
as speci�ed by RFC 6282 [23]. This mechanism allows to compress
the header of IPv6 packets sent within the same subnet from 40
down to 2 bytes. Since the L2CAP layer handles fragmentation,
this layer is a lightweight version of the existing adaptation layer
in Contiki, without its 802.15.4-speci�c fragmentation mechanism.
Upper layers. RFC 7668 does not foresee any speci�c change in
IPv6 addressing, neighbor discovery, and packet format. Moreover,
it supports any transport layer on top of IPv6. Hence, BLEach
can reuse any IPv6 implementation for constrained devices such
as Contiki’s uIP, Sensinode’s NSv6, and Arch Rock’s ARv6, and
supports TCP, UDP, or any other upper layer running on top.

4.2 Integration into Contiki
We integrate BLEach into Contiki by reusing its IPv6 and UDP
support and by mapping each of the four lowest layers to an existing
layer in Contiki’s IPv6-over-IEEE 802.15.4 stack as shown in Fig. 4.
Same number of layers, di�erent functionality. BLEach’s low-
est layer, the BLE link and PHY layer, directly maps into Contiki’s
radio layer, but with completely di�erent functionality. Whilst Con-
tiki’s radio layer (and traditional layers tailored to IEEE 802.15.4)
o�ers direct radio access and immediate feedback on issued radio
commands, this is not the case in the BLE link and PHY layer, as
the access to the radio is decoupled from the upper layers.

BLEach’s parametrization layer maps into Contiki’s radio duty
cycling (RDC) layer. The key di�erence is that whilst existing RDC
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layers in Contiki (e.g., ContikiMAC [16] and X-MAC [10]) directly
issue primitives switching on and o� the radio module to control
their duty cycle and provide more energy-e�cient communication,
BLEach’s parametrization layer can only carry out an indirect form
of duty cycling by means of connection parameter adaptation.

The L2CAP layer of BLEach directly maps into Contiki’s medium
access control (MAC) layer. Its responsibilities, however, are not
taking care of collision avoidance, back-o� strategies and retrans-
mission of packets as in Contiki’s IPv6-over-IEEE 802.15.4 stack (as
these are already accomplished by the BLE link and PHY layer), but
rather to provide fragmentation and �ow control, as well as QoS
support by means of tra�c prioritization and multiplexing.

Finally, the IPv6 compression layer of BLEach is a subset of
Contiki’s adaptation layer. The latter also needs to fragment IPv6
packets, which is already accomplished by BLEach’s L2CAP.
Easily portable. Because we keep the architecture of BLEach
generic, porting it to an arbitrary BLE platform only consists of
adapting the BLE link and PHY layer implementation—all other
layers remain unchanged. Furthermore, as the size of the bu�ers
employed for packet fragmentation and frame transmission or re-
ception as well as the maximum number of simultaneous connec-
tions are con�gurable, developers can optimize the stack for the
hardware platform at hand. This makes it possible to support a
large range of BLE devices, from very constrained platforms such
as the TI CC2650 with only 20 kB of memory to more powerful
platforms like the Nordic Semiconductor nRF52 with 128 kB of
memory. BLEach is also not limited to a speci�c BLE version and
can be easily con�gured to use BLE v4.1, v4.2, and v5.0, depending
on the version supported by the target hardware platform.
Application agnostic. Because it strictly adheres to Contiki’s sys-
tem architecture, BLEach is agnostic to the application running
on top; developers may run the same application using IPv6 over
IEEE 802.15.4 or IPv6 over BLE by simply changing the project’s
con�guration �le at compile time. In Sec. 6.4 we exploit the two
radios on the TI CC2650 to run the same exemplary application on
top of IPv6 over IEEE 802.15.4 and IPv6 over BLE.
Support for multi-radio operation. An interesting avenue for
future work is adding support for concurrently using the multiple
radios available on state-of-the-art platforms. Based on similar prior
e�orts [26], doing so requires changes that cross-cut the entire
system stack in Contiki. We believe that combining BLEach and
the existing IEEE 802.15.4 would be a good place to start since they
follow the same architecture and provide compatible interfaces.

4.3 Implementation
We implement BLEach on the TI CC2650 platform, which features
an ARM Cortex-M3 application core with 20 kB of memory and an
ARM Cortex-M0 radio core providing either IEEE 802.15.4 or BLE
communication. We describe next BLEach’s basic modules for each
layer shown in Fig. 4, starting from the BLE link and PHY layer.
ble-cc2650. Our implementation of the BLE link and PHY layer
supports both slave and master mode according to the BLE speci�-
cation v4.1 [5]. In slave mode, the device may only be connected
to a single master at a time. In master mode, the device is able to
maintain connections to multiple slaves, whose number depends on

the selected connection capacity F . In our default implementation,
we limit the connection capacity to 256 bytes in order to support at
least 4 slaves, and allow to select a connection interval in the range
from 20 ms to 4000 ms and a slave latency between 0 and 500.

The TI CC2650 features an open BLE controller; that is, its ra-
dio core uses shared memory and dedicated handshake hardware
to interact with the application core [42]. The radio core expects
commands that specify the beginning and the end of a BLE event,
as well as which radio channel to use, and does not provide any
autonomous scheduling of BLE advertising or connection events,
BLE bu�er management, or AFH mechanism. To support BLE con-
nections, we implement the connection schedule at the application
core using Contiki’s rtimer in order to wake-up the radio core and
issue the BLE command with the right parameters in time for the
connection event to be properly scheduled. The application core
wakes up 1.5 ms before the start of a connection event and performs
the following tasks: (i) it uses BLE’s AFH algorithm to select the
data channel to be used during the connection, (ii) adds the data to
be transmitted over the connection to the transmission queue of
the radio core, (iii) enables and initializes the radio core, and �nally
(iv) issues the BLE command. Once the radio core completes the
connection event, the application core disables the radio.
ble-null-par. Using the minimal con�guration of BLEach, the
parametrization layer makes use of the default parameters set by
the master device and provides an interface for further extensions.
ble-l2cap. In the minimal con�guration, the L2CAP layer sup-
ports IPv6-over-BLE transmissions with a maximum length of 1280
bytes split into 256 byte fragments (i.e., a bu�er size of θ = 5 frag-
ments is allocated for each connected device). After a link-layer
connection between two devices is established, the master creates a
single L2CAP channel to the slave. The created LE credit-based �ow
control channel is then used for any IPv6 packet sent, and master
and slave grant credits to each other to prevent bu�er over�ows.
The �ow control mechanism we provide checks if the credits of a
peer device fall below a threshold τ = 2. If this is the case, γ = 4
additional credits are granted. As γ ≤ θ this simple mechanism
guarantees that two devices can communicate at least one fragment
at any given time and that no bu�er over�ow occurs.
6lowble and uip. We use Contiki’s sicslowpan to build BLEach’s
6lowble module by stripping away the IPv6 fragmentation func-
tionality so as to provide only IPv6 header compression according
to RFC 6282 [23]. We further use Contiki’s uip [15] suite to pro-
vide BLEach with IPv6 communication, neighbor discovery, address
autocon�guration, and support for UDP and TCP tra�c.

5 EXTENDING BLEACH
We present three modules that extend BLEach with novel BLE func-
tionality: an adaptive duty cycling parametrization layer (Sec. 5.1),
an L2CAP module supporting QoS by means of tra�c prioritization
and multiplexing (Sec. 5.2), and a BLE link and PHY layer module
that additionally provides indirect link-quality monitoring (Sec. 5.3).
These extensions are highlighted in Fig. 4 and evaluated in Sec. 6.3.

5.1 Adaptive Radio Duty Cycling
A slave with limited battery capacity may not be able to a�ord a BLE
connection with a border router using a default set of connection
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parameters chosen to sustain a high tra�c load. We thus design
a parametrization layer implementing an adaptive duty-cycling
mechanism that adapts the connection interval at run-time to the
current tra�c load. Using this mechanism, a slave can negotiate
with the border router a new set of connection parameters that
better �ts its application needs.

Furthermore, this adaptive parametrization layer also allows
the slave to quickly adapt to sudden changes in the tra�c load by
temporarily increasing the connection interval if the tra�c load
decreases over time or by decreasing the connection interval in case
more bandwidth is needed. Unlike existing adaptive duty-cycling
approaches for IEEE 802.15.4 that tune the radio duty cycle on a
per-node [30] or per-network [46] basis, our approach adapts the
radio duty cycle for each individual BLE connection.
ble-adapt-par. The new parametrization layer extends the basic
ble-null-par module to periodically monitor the BLE connection
and calculates the weighted moving average of the BLE connection
utilization, that is, the percentage of available connection events
actually used to transmit data. If the average utilization drops below
a threshold Ulow = 25 %, the adaptation mechanism negotiates a
longer connection interval to increase the energy e�ciency. Instead,
if the average utilization increases above a threshold Uup = 75%,
the adaptation mechanism negotiates a shorter connection interval
so that the slave is able to sustain a higher data rate.

To negotiate new connection parameters, the slave sends a BLE
connection parameter request to the master. The master responds
with a BLE connection update request that either con�rms or de-
clines the set of proposed connection parameters. BLE speci�es that
the new connection parameters take e�ect six connection events
after the connection update request was sent. This inevitable delay
increases the reaction time of our adaptation mechanism.

5.2 Tra�c Prioritization and Multiplexing
L2CAP’s LE credit-based �ow control mode can be used to provide
novel QoS mechanisms that enhance the simple bu�er over�ow
prevention de�ned by the standard. We establish multiple L2CAP LE
credit-based �ow control channels between peer devices, each one
with its own fragmentation bu�er and credit count, and transport
a di�erent type of IPv6 tra�c on each channel.

By granting a di�erent amount of credits to each channel, a
device can prioritize a speci�c type of tra�c over another one. Fur-
thermore, a master can prioritize di�erent nodes in the network by
granting fewer credits to slaves with low priority and more credits
to slaves with high priority.
ble-l2cap-qos. We implement this simple principle by extending
the basic ble-l2cap module as follows. First, we use one L2CAP
channel for every IPv6 tra�c class supported, multiplexing IPv6
tra�c over a single BLE connection. Second, we adapt the fragmen-
tation of the L2CAP layer such that it prioritizes the transmissions
of the channel with the highest credit count. We further allow
IPv6-over-BLE devices to change the priority of incoming tra�c
classes dynamically using the standardized L2CAP LE �ow control
credit message. Although multiple L2CAP channels for IPv6 are
not foreseen by RFC 7668, we do not violate any speci�cation and
only use standardized primitives to implement our approach.

5.3 Indirect Link-quality Monitoring
Most BLE radios implement an AFH algorithm that blacklists data
channels with insu�cient link quality. Unfortunately, several radios
are black boxes and a developer neither knows which metric is
used to estimate the link quality of a data channel nor under which
conditions a channel is blacklisted. We extend BLEach with a BLE
link and PHY layer that implements indirect link-quality monitoring
and adapts the list of blacklisted channels at run-time.
ble-cc2650-ext. We extend the basic ble-cc2650 module by
measuring the link-quality of data channels without the need to
actively sense surrounding interference by means of RSSI scan-
ning. In particular, if the status of a completed connection event is
BLE_DONE_NO_SYNC, we increase the number of connection errors
nerr of the current data channel. This status is returned if a BLE
handshake between master and slave could not be performed. If
nerr exceeds a blacklisting threshold β for a data channel, the master
blacklists this channel and updates the channel map by sending a
BLE channel map update. The master may whitelist data channels
after a prede�ned time to not run out of active data channels.

6 EVALUATION
Our evaluation quantitatively answers the following questions:

• Are our analytical models accurate so they can be used to
�nd optimized BLE connection parameters? (Sec. 6.1)

• Is BLEach interoperable and e�cient with regard to mem-
ory, processing, and energy constraints? (Sec. 6.2)

• How e�ective are the three exemplary modules we design
in making BLEach adaptive to changes in tra�c load, tra�c
priorities, and wireless interference? (Sec. 6.3)

• Does BLEach achieve performance gains compared with
an IPv6-over-IEEE 802.15.4 stack? (Sec. 6.4)

6.1 Model Validation
We begin by validating our analytical models from Sec. 3.3.
Setup. We run BLEach on two TI CC2650, one acting as master and
the other as slave. We let the slave exchange D = 512 bytes with
the master for varying data generation intervals tD . To measure la-
tency and energy consumption for di�erent connection parameters,
we connect both devices to a Keysight MSO-S 254A mixed-signal
oscilloscope. We calibrate our analytical models with the hardware-
dependent parameters listed in Table 2, and compare their output
against our measurements for the same connection parameters.
Results. Figs. 5 and 6 plot energy and latency against connection
interval conn_int for two di�erent slave latencies SL and varying
tD ; the connection capacity F is �xed at 256 bytes. We see that
our models are highly accurate. The predicted energy matches the
measured energy and the theoretical upper bound on latency is
always slightly above the measured latency across all settings.

We can make further observations important for parameter tun-
ing. For example, looking at Fig. 5, we see that changing the con-
nection interval conn_int from 20 to 100 ms or the slave latency
SL from 0 to 10 decreases the energy consumption by a factor of
2, regardless of the application interval tD . Connection intervals
longer than 100 ms result in only marginal energy reductions but in
a linear increase in latency. This is because in this operating regime
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Figure 5: Impact of connection interval and slave latency on
energy consumption for 256 bytes connection capacity.
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Figure 6: Impact of connection interval and slave latency on
communication latency for 256 bytes connection capacity.

the idle energy EI dominates. Thus, a connection interval around
100 ms gives a good trade-o� between energy and latency in this
setting. It is also worth noting that the slave latency SL , which has a
signi�cant impact on energy, has no impact on latency: a slave only
skips connection events in the absence of data to be transmitted.

Fig. 7 plots energy and latency against connection capacity F
for two di�erent tD ; connection interval and slave latency are
�xed to 200 ms and 10, respectively. Again, we see that our models
accurately predict performance. We also see that the connection
capacity F a�ects energy only minimally, but has a strong impact
on latency. Indeed, we learn from Fig. 7 that by increasing F from
64 to 256, latency drops by a factor of 3. The impact of F on energy
becomes more visible at frequent tra�c. For tD = 1 s, energy drops
by 8% when increasing F from 64 to 256. These �ndings are impor-
tant insights when tuning BLE connection parameters to optimize
performance and to meet given application requirements.

6.2 Evaluating Minimal BLEach
Next, we run experiments using BLEach’s minimal con�guration
(ble-cc2650 + ble-null-par + ble-l2cap), evaluating interoper-
ability, memory footprint, processing overhead, and energy cost.
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Figure 7: Impact of connection capacity on energy consump-
tion and latency for a connection interval of 200 ms and a
slave latency of 10 for two di�erent application intervals tD .

Table 3: Interoperability of BLEach.
Master device Interoperable? Energy cost slave
TI CC2650 X 103.796 ± 0.659 mJ
Raspberry Pi 3 X 103.821 ± 0.895 mJ
LogiLink BZ0015 X 104.597 ± 0.791 mJ

6.2.1 Interoperability. Nodes running BLEach are interoperable
with any border router compliant with RFC 7668. To demonstrate
this, we deploy BLEach on a TI CC2650 device acting as slave
and let it interact with three di�erent devices acting as master:
(i) a LogiLink BZ0015 BLE-USB dongle attached to a Raspberry
Pi 1 Model B, (ii) a Raspberry Pi 3 with an embedded Cypress
Semiconductor BCM43438 BLE radio, and (iii) a TI CC2650. Both
Pis run the Raspbian OS with the BlueZ stack [7] and the 6LoWPAN
driver; the latter supports a maximum fragmentation size of 128
bytes. The TI CC2650 acting as a master runs BLEach in the border
router con�guration, using a fragmentation size of 128 bytes for a
fair comparison with the two Pis. We instruct the slave to transmit
a 256-byte IPv6 packet to the master every second. The master is
supposed to always reply with an IPv6 packet of the same length,
and to instruct the slave to use conn_int = 125 ms and SL = 0. We
measure the energy consumption of the slave using the oscilloscope.
We verify in di�erent runs that the slave successfully exchanges
IPv6 packets with all three masters. Table 3 shows that the slave
consumes the same energy regardless of the master it talks to.
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Table 4: Memory footprint of BLEach when supporting a
maximum IPv6 packet length of D = 512 bytes.

Device RAM usage [kB] ROM usage [kB]
Slave 3.318 10.941
Master (1 slave) 3.318 12.938
Master (2 slaves) 5.771 13.023
Master (4 slaves) 10.678 13.023

6.2.2 Memory footprint. We quantify the memory footprint of
BLEach on slave and master devices in terms of RAM and ROM us-
age. Table 4 shows BLEach’s footprint when supporting a maximum
IPv6 length of D = 512 bytes. In this con�guration, the master can
support up to 4 slaves simultaneously; 8 slaves would be possible
with D = 200 bytes. The RAM usage of a master with 1 supported
slave is the same as the RAM usage of a slave; the ROM usage is
slightly higher. A footprint of 3.3 kB in RAM and 10.9 kB in ROM
is a good compromise for IoT devices, yet the former can be fur-
ther reduced by con�guring BLEach with a smaller D. For instance,
with D = 64 bytes, the slave requires only 1.53 kB of RAM. Due
to the memory e�ciency of BLE, BLEach is very lightweight and
well-suited for resource-constrained embedded IoT devices.

6.2.3 Processing overhead. To evaluate the processing overhead
of BLEach, we measure the duration of UDP transmissions with
di�erent payload sizes from slave to master using the oscilloscope
and break down the time spent in each layer of the stack (conn_int
= 50 ms and SL = 0). The x-axis in Fig. 8 shows the IPv6 packet
length, including IPv6 header, UDP header, and UDP payload.

Fig. 8 shows that the largest fraction of time is spent in the BLE
controller performing the actual data transmission. Indeed, we no-
tice that the higher the connection capacity, the lower the absolute
time spent by the BLE controller to complete the transfer. Com-
pared to this fraction of time, the processing time of the remaining
layers accounts for only 1.5–4.7 %. It is important to highlight that
the operation of the BLE controller is in most cases hidden from
the developer and that this overhead is not introduced by BLEach.

Fig. 8 also shows that the L2CAP layer performing fragmentation
accounts for the largest processing overhead among the upper
layers in BLEach, especially when the connection capacity F is
small. When F is much smaller than the UDP payload, the L2CAP
layer needs to process many small fragments and its e�ciency
decreases. This means that employing larger fragments is a better
choice. Even more so, as the processing time of the BLE controller
is two orders of magnitude larger than that of the L2CAP layer, it
is more e�cient to accumulate data at a BLE node and send it in
bigger chunks. The overhead of the network and transport layers,
instead, varies only minimally as a function of the payload length.

6.2.4 Energy consumption. We also evaluate the energy con-
sumption of a TI CC2650 master running BLEach as a function of
the number of connected slaves, and compare it with the energy
expenditure of a TI CC2650 slave device using BLEach. We employ
the aforementioned setup and let each slave in the network period-
ically send IPv6 packets with a length of 256 bytes to the master
using a connection interval conn_int = 125 ms, a slave latency
SL = 0, and F = 256 bytes. We then use the oscilloscope to measure
the energy consumption of each individual device.
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Figure 8: Breakdown of BLEach’s processing time per layer
when serving IPv6 transmissions of varying packet length.

 0

 15

 30

 45

 60

1 2 3 4

E
ne

rg
y 

[m
J]

Number of slaves supported by the master

Slave
Master

+44%

+141%
+207%

+276%

Figure 9: Energy consumption of slave and master running
BLEach against the number of supported slaves in a subnet.

Fig. 9 shows that the energy consumption of the master is slightly
higher than the one of the slave when having only one slave con-
nected, and that it increases proportionally to the number of con-
nected slaves. Instead, a slave does not exhibit any increase in
energy consumption as more slaves connect to the master.

6.3 Evaluating Extended BLEach
We evaluate next the three extension modules we designed for
BLEach—adaptive duty cycling, IPv6-over-BLE tra�c prioritization
and multiplexing, and indirect link-quality monitoring—and show
that they help in increasing the network performance and resilience.

6.3.1 Adaptive duty cycling. We �rst evaluate the ability of the
ble-adapt-par module described in Sec. 5.1 to adapt the connec-
tion interval at run-time to unforeseen changes in tra�c load. To
this end, we let two slave devices communicate to a master. The �rst
slave runs BLEach’s ble-rdc RDC layer and uses �xed connection
parameters (conn_int = 62.5 ms and SL = 0), which correspond to
the default settings in Linux’ BlueZ stack. The second slave runs
ble-adapt-par, adapting the connection interval at runtime. We
vary the tra�c load of the slaves over time. Each slave initially
schedules the transmission of a 256-byte packet every second. The
number of scheduled transmissions is then halved, doubled, quadru-
pled, and �nally reduced to a quarter in consecutive phases. We
measure power draw and packet delivery rate of the two slaves.

Fig. 10 (top) plots the scheduled transmissions over time, which
result in di�erent packet rates. Below we plot the connection in-
tervals selected by the two slaves. The two charts at the bottom of
Fig. 10 plot packet delivery rate and power draw of both slaves.
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Figure 10: Performance of BLEach with and without adap-
tive duty cycling as the tra�c load changes over time.
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Figure 11: IPv6-over-BLE tra�c multiplexing and prioritiza-
tion in action, as provided by ble-l2cap-qos in BLEach.

First, we observe that our adaptive duty cycling module achieves
a signi�cant reduction in power draw of up to 50 % compared with
the static setting. Indeed, as visible in Fig. 10, the latter is optimized
for a very high tra�c load, which causes excess energy consumption
during all other phases with lighter tra�c load.

Second, we see a slight drop in packet delivery rate at the begin-
ning of the phase with the highest tra�c load. This is because our
current implementation of ble-adapt-par is compliant with the
BLE standard, which speci�es that a parameter change takes e�ect
exactly after six connection events [5]. Thus, if the current connec-
tion interval is 500 ms, which is the case right before the high-load
phase starts, it takes at least 3 seconds until the �rst parameter
update occurs. Nevertheless, using BLEach, we would be able to
easily overrule these speci�cations on open BLE controllers, such
as the TI CC2650, which is not foreseen by existing BLE stacks.

Third, looking at the arrow in Fig. 10, we can see that the few
additional packets sent by the slave to the master to inform about
its preferred parameters incur a negligible cost. This cost is in fact
a very good investment given the energy savings it enables.
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Figure 12: Bene�t of indirect link-quality monitoring and
channel blacklisting in the presence of radio interference.

6.3.2 QoS support. BLEach’s ble-l2cap-qos module described
in Sec. 5.2 allows to prioritize and multiplex IPv6-over-BLE tra�c.
We now evaluate its performance by running an exemplary BLE
system consisting of a master M and a slave S employing three
types of IPv6-over-BLE tra�c A, B, and C . Tra�c A transports
sensor data collected by S , tra�c C embeds actuation commands
issued by S to other nodes in the network in response to speci�c
sensed events, whilst tra�c B is maintenance ICMPv6 tra�c. Each
tra�c class is assigned its own L2CAP channel and a priority ad-
justable at run-time by the master using L2CAP’s LE credit-based
�ow control mechanism. We study how the operations of BLEach’s
ble-l2cap-qos module a�ect the performance of the overall sys-
tem. In our experiments, we select conn_int = 125ms and F = 256
bytes, i.e., the BLE link layer can send at a maximum data rate of 2
kB/s using eight connections per second carrying 256 bytes each.

Fig. 11 (middle) shows the data rate of the three tra�c sources.
Starting from time 0, the slave S transmits periodic ICMPv6 tra�cA
at 512 bytes/s. At time 20, S generates 1024 bytes/s tra�c of type B,
signaling to the masterM the occurrence of a speci�c event. At time
40, S reacts on the detected event by issuing actuation commands
for other nodes in the network and hence tra�c of type C at a data
rate of 1024 bytes/s. As the sum of the three tra�c �ows exceeds
the maximum utilization of the BLE link between S and M , the
higher-priority tra�c C gets scheduled �rst with the result that
only a portion of the lower-priority tra�c B is served.

At time 60, the master M is interested in verifying that the actua-
tion commands previously sent through the network have achieved
the desired e�ect, and dynamically switches the priority of tra�c B
and tra�c C , thus prioritizing sensed data. Fig. 11 shows that, as a
result, as soon as the number of credits left for tra�cC are used up,
tra�c A and B gets scheduled �rst, thereby prioritizing sensed data
as instructed by the master. Our exemplary implementation of the
ble-l2cap-qos module only assigns credits; dynamically reducing
credits at run-time is an interesting direction for future work.

6.3.3 Indirect link-quality monitoring. We now look at BLEach’s
ble-cc2650-ext module described in Sec. 5.3, assessing the ben-
e�ts provided by indirect link-quality monitoring in the face of
wireless interference. To this end, we generate controlled interfer-
ence using JamLab [8]. The interference resembles either Wi-Fi
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Table 5: Processing time per layer (in milliseconds) for the IPv6-over-IEEE 802.15.4 and BLEach stacks for varying payload size.

IPv6 over IEEE 802.15.4 IPv6 over BLE (BLEach)
Payload Radio RDC MAC Upper Layers BLE L. & P. Parametr. L2CAP Upper Layers
128 bytes 9.10± 2.23 17.35± 0.21 0.025± 0.001 0.120± 0.001 4.53± 0.02 0.022± 0.001 0.057± 0.001 0.107± 0.001
256 bytes 16.48± 2.45 23.32± 0.27 0.054± 0.001 0.254± 0.001 7.84± 0.02 0.041± 0.001 0.081± 0.001 0.142± 0.001
512 bytes 27.33± 2.49 29.22± 0.35 0.090± 0.002 0.406± 0.001 16.47± 0.04 0.084± 0.004 0.201± 0.003 0.213± 0.001

data exchange on a single Wi-Fi channel (Wi-Fi 1 ch.), or one or two
extremely congested Wi-Fi channels due to improper or malicious
activity in the surrounding (Block (1 ch.) and Block (2 ch.)).

We use an application that exchanges 50 consecutive IPv6 pack-
ets with a length of 256 bytes between a master and a slave using
conn_int = 250 ms and SL = 0. Each packet needs to be acknowl-
edged before the next one can be transmitted. We run BLEach using
ble-cc2650-ext and show that the ability to monitor the connec-
tion event status allows to quickly in�uence the channel_map used
by the BLE controller to select the channel for sending packets.

Fig. 12 shows that this signi�cantly reduces the duration of
the data exchange between master and slave as well as the energy
consumption. The plot also highlights how aggressively blacklisting
a channel after only one failed connection event (β=1) can actually
minimize both latency and energy costs. Finally, Fig. 12 also shows
that, in absence of interference, no additional energy is consumed
by ble-cc2650-ext. Indeed, the implemented strategy does not
make use of passive RSSI scanning, which would cause the radio to
remain active for an additional period of time as in [33].

6.4 Comparison with IPv6 over IEEE 802.15.4
The TI CC2650 comes with a BLE and an IEEE 802.15.4 radio, allow-
ing us to compare the performance of BLEach against Contiki’s IPv6-
over-IEEE 802.15.4 stack on the same platform. Because BLEach
fully adheres to Contiki’s system and stack architecture, we can run
the same application without any changes on top of both stacks.
We enable ContikiMAC’s phase lock optimization and con�gure a
wake-up interval wakeup_int of 62.5 and 125 ms (a channel check
rate of 16 and 8 respectively). We compare its performance with our
BLEach stack con�gured with a connection interval conn_int of 62.5
and 125 ms, respectively, to ensure a fair comparison. Both radios
transmit packets with a transmission power of 0 dBm. ContikiMAC
is con�gured with a guard time of 22.9 ms and a maximum phase
strobe time of 30.52 ms (1500 and 2000 rtimer ticks, respectively)
and the maximum number of frame retries of CSMA is set to 1. We
employ an application that triggers a series of 60 request-response
interactions between a client and a server. Every second, the client
(BLE slave) sends one UDP packet of variable size to the server
(BLE master), who replies with an UDP packet of the same length.
Energy consumption. Fig. 13 plots the energy consumption of
the client (BLE slave) measured with the oscilloscope for di�erent
IPv6 packet sizes. The x-axis in Fig. 13 shows the overall length of
the exchanged IPv6 packet, including IPv6 header, UDP header, and
UDP payload. BLEach consumes on average approximately 50% less
energy than the IPv6-over-IEEE 802.15.4 stack, regardless of the
selected wake-up or connection interval, as well as packet length.
This energy saving can be explained by analyzing the di�erent
processing times of the two stacks.
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Figure 13: Average power draw of BLEach and the IPv6-over-
IEEE 802.15.4. stack of Contiki on the TI CC2650.

Processing time. Table 5 shows the processing time of each layer
in the two stacks for di�erent payload length and a wakeup_int or
conn_int of 125 ms. The IPv6-over-IEEE 802.15.4 stack exhibits a
higher overhead compared to BLEach due to the large CPU time
spent in the RDC layer scheduling ContikiMAC’s strobe transmis-
sions and clear channel assessments, as well as due to the higher
processing time in the radio layer. There are three reasons for the
higher radio time when using IEEE 802.15.4. First, IEEE 802.15.4
transmits at 250 kbit/s, which is four times lower than the data
rate of BLE (1 Mbit/s). Hence, when transmitting the same number
of bytes, IEEE 802.15.4 has a longer transmission time compared
to BLE. Second, the maximum payload length of IEEE 802.15.4
is limited to 125 bytes. Packets exceeding this maximum payload
length are fragmented into smaller chunks and transmitted sequen-
tially. Compared to IEEE 802.15.4, the connection capacity F of
BLE is not limited by the BLE speci�cation and is con�gured to be
F = 256 bytes in BLEach. Therefore, IPv6 over IEEE 802.15.4 needs
to transmit more fragments when sending long IPv6 packets than
BLEach, introducing link-layer overhead with every additional frag-
ment. Third, ContikiMAC with phase lock enabled repeatedly sends
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Figure 14: Received signal strength measured with the TI
CC2650 using the BLE and IEEE 802.15.4 radio modes.

the �rst fragment of every packet exchange until it is acknowledged,
contributing to the higher radio time shown in Table 5.
Communication range. Although the previous experiments show
that BLE is more energy e�cient than IEEE 802.15.4 when using the
same platform (con�rming the results of [13, 40]), it is important
to set this into perspective with the achievable communication
range of both wireless technologies. We experimentally observe
that IEEE 802.15.4 supports a larger range by comparing the com-
munication range of two TI CC2650 devices deployed outdoor with
direct line-of-sight that exchange IPv6-over-IEEE 802.15.4 and IPv6-
over-BLE packets. Fig. 14 shows the evolution of the received signal
strength (RSS) as a function of the distance between the two nodes
for two di�erent transmission power levels. The �gure also shows
the distance at which no more packets were received, highlighted
by the dots at -100 dBm, where both BLE and IEEE 802.15.4 fail
to exchange messages. When sending packets at a transmission
power of 0 dBm, the maximum achievable communication range is
75 and 90 meters for BLE and IEEE 802.15.4, respectively, whilst it
is 24 and 38 meters when using a transmission power of -15 dBm.
This allows us to conclude that, when using the TI CC2650 in BLE
mode, the communication range is indeed shorter than the one that
can be reached using IEEE 802.15.4.

7 RELATED WORK
The lack of open-source BLE stacks has signi�cantly hindered BLE
networking research [41]. Instead, the community has focused
on designing battery-driven [41] or energy-harvesting [12] BLE
platforms and on exploiting BLE’s connection-less mode for other
services, such as neighbor discovery [25], indoor localization [18],
group management [20], and locality-based authorization [19]. Be-
low we review related work on BLE stacks for embedded IoT devices,
run-time adaptability, and relevant BLE networking projects.
BLE stacks. There exists a number of proprietary BLE stacks lack-
ing IPv6 support, for example, from TI [43] and Mindtree [32]. Open-
source BLE support in TinyOS and Contiki is completely missing
or limited. Contiki only features transmissions of advertisement
packets without IPv6 for the TI CC2650 radio, and a closed-source
BLE radio and L2CAP slave implementation for the nRF52 that does
not support fragmentation of IPv6 packets. Android uses the Blue-
Droid stack, which supports both classic Bluetooth and BLE but

not IPv6 over BLE [1]. Apache MyNewt [2] and Zephyr [44] come
with stacks implementing full-�edged BLE connections. However,
Apache’s NimBLE stack does not support IPv6 and is memory-
hungry (4.5 kB of RAM, 69 kB of �ash), and Zephyr’s stack supports
IPv6 over BLE only on slave devices, and cannot fragment large
IPv6 packets, which makes it unsuitable for constrained IoT devices.

In contrast to these stacks, BLEach is open-source, streamlined
for easy integration into Contiki, supports IPv6 on master and slave
devices, and lightweight to be used on constrained IoT devices. In
addition, it provides an API to tune key BLE parameters at run-time.
BLE measurements. Other works have studied the energy e�-
ciency and timeliness of BLE. Gomez et al. [21] have reported the
energy consumption and packet latency of Attribute Protocol com-
munications with a maximum link-layer packet length of 37 bytes.
Dementyev et al. [13] have measured the energy consumption of
BLE slaves that periodically send 8-byte data packets over a BLE
connection. Likewise, Siekkinen et al. [40] have studied the energy
consumption of connection-less and connection-based BLE for a
maximum link-layer payload size of 27 bytes. Both studies con-
clude that the BLE link-layer has a higher energy e�ciency than
IEEE 802.15.4 in their experimental setup.

Our experiments con�rm their results and further provide a
detailed comparison of IPv6 over BLE and IPv6 over IEEE 802.15.4
on the same hardware platform for a wide range of IPv6 packet
lengths, as well as an analysis of the processing time introduced by
each layer of the communication stack.
BLE runtime adaptability. Gomez et al. show that connection
interval and slave latency impact BLE performance, suggesting that
these parameters could be tuned to meet given application require-
ments [21]. Similarly, Lee et al. report on experiments showing
that the connection interval a�ects the packet delivery rate [29].
Kindt et al. adapt the connection interval to tra�c load for energy
e�ciency [27]. However, their approach lacks practicality, since
they assume that the adaptation logic runs on the master, whose
�rmware is often not easily accessible (e.g., an IPv6 gateway or
smart-phone). Mikhaylov adjusts the connection interval to reduce
the time and energy needed for BLE connection establishment [31].

Unlike these works, we accurately model the impact of all key pa-
rameters a�ecting connection-based communication performance
(i.e., including slave latency and connection capacity), and expose
them to slaves through a standard-compliant negotiation-based in-
terface. Moreover, to the best of our knowledge, we are the �rst to
consider adaptive L2CAP functionality, providing QoS guarantees
by means of dynamic tra�c multiplexing and tra�c prioritization.
Other relevant BLE networking research. A few works aim to
unleash BLE from rigid single-hop networking. For instance, Roest
presents a BLE port of the all-to-all Chaos primitive [28], demon-
strating performance gains when nodes use all 40 BLE channels in
a randomized fashion [39]. Lee et al. exploit a powerful embedded
Linux PC to run RPL over a tree-based multi-hop topology [29],
showing performance bene�ts of RPL over BLE compared to RPL
over IEEE 802.15.4. Hussain et al. enable mobility through seamless
BLE connection migration between gateways [22].

We believe that the work presented in this paper and its open-
source availability can empower more of such novel BLE network-
ing research in the years to come.
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8 CONCLUSIONS
BLEach is the �rst open-source stack with full-�edged support for
IPv6 over BLE. It is modular, interoperable, e�cient, and can be
ported to a variety of BLE platforms with minimal e�ort. BLEach
exposes several key parameters to �ne-tune communication perfor-
mance at runtime, using our accurate latency and energy models.
Three novel modules we design make BLEach adaptive to tra�c
�uctuations and wireless interference, while providing QoS guar-
antees through on-demand tra�c prioritization and multiplexing.
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1 INTRODUCTION
The continuous proliferation of wireless devices leads to an increasing congestion of the RF spec-
trum; especially in the 2.4 GHz ISM band, where several technologies share the same frequen-
cies [37]. One of these technologies is Bluetooth Low Energy (BLE), which is increasingly used to
build Internet of Things (IoT) applications due to its wide adoption in consumer devices such as
wearables, tablets, laptops, and smartphones [5].

BLE systems typically need to co-exist with a large number of Wi-Fi devices, which transmit at
high data rates, use a significantly higher transmission power, and make use of much wider channel
bandwidths (20 or even 40 MHz). Furthermore, Bluetooth-based devices (using either BLE or classic
Bluetooth) such as headphones, headsets, hearing aids, smart watches, and fitness trackers, are
becoming ubiquitous, which increases their chances to interfere with each other and experience
co-existence issues [1, 21].

Such issues typically manifest in the form of an increased packet loss and a higher amount of
re-transmissions, which may affect, in turn, key performance metrics such as energy efficiency,
latency, and throughput [6]. As several BLE-based systems are used in safety-critical application
domains such as health care [4, 12] and smart cities [3, 10], it is important to fully understand the
impact of radio interference on their performance and to make sure that delay-sensitive applica-
tions operate correctly even in noisy RF environments.
Limited number of experimental studies under interference. To date, however, still very
little is known about the actual performance of BLE in the presence of interference, especially when
it comes to connection-based BLE systems. Existing works focus mostly on BLE discovery [11,
36] or are limited to simulations showing the impact of increasing bit error rates [25, 34]. A few
measurement reports carried out using real hardware exist but are either limited to small-scale
experiments in anechoic chambers [30] or only address the interference generated by co-located
BLE devices [35].

Unfortunately, the works available do not allow to get a comprehensive picture of BLE’s per-
formance in typical residential and office environments where several wireless networks are co-
located. Even worse, some works do not reach the same conclusions: while most simulation works
argue that BLE’s performance should decrease under interference [25, 34], some of the existing
studies do not confirm this [30]. Because of this lack of experimental evidence, the general belief
in the community is that BLE is highly reliable under radio interference by design, thanks to its au-
tonomous packet re-transmission and its adaptive frequency hopping (AFH) mechanism [8, 15, 29].
No upper bound on latency. By using autonomous retransmissions and AFH, BLE connections
re-transmit packets on different frequencies until interference is finally avoided and the packet
is successfully sent. Although this is proven to be an effective method to mitigate co-existence
problems [24, 30], it only makes sure that every data packet that is added to the transmission
buffer of a BLE radio will eventually get transmitted (as long as a connection is not dropped).

As we show in Section 3, the presence of interference can introduce significant delays that
may affect the performance of a BLE application. To minimize the number of data transmissions
exceeding a given delay bound, connection-based BLE applications can adjust their connection
parameters at runtime [31] to increase timeliness at the cost of additional power consumption.
Unsuitable latency models. The ability to adjust connection parameters at runtime, however,
requires proper models capturing the impact of radio interference. Unfortunately, most of the
existing models rely on ideal channel conditions [13, 31]. A few models for noisy channels exist [7,
9, 25], but they cannot be used by most BLE devices, as they rely on information that is not available
on the BLE host (e.g., bit error rate, employed data channels, and number of CRC errors).
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Most BLE controllers are drop-in radio peripherals that hide all communication details to a BLE
application running on the host processor. A BLE application may only issue high-level commands,
such as adding data to the transmission buffer of the BLE controller. The latter essentially acts as
a black box, which autonomously handles (re-)transmission and acknowledgment of link-layer
packets, buffer management, as well as data channel selection.
Receiving feedback at runtime. Once data are added to the transmission buffer of a BLE con-
troller, the application assumes it is successfully transmitted. The BLE specification [5] does
not foresee a standardized way for an application to get information about the number of link-
layer retransmissions during a packet exchange, nor specify a link quality indicator. In other
words, applications do not receive any feedback from the BLE controller about ongoing link-layer
transmissions—neither about loss, nor about latency. Therefore, to be aware of the timeliness of
its communications, a BLE application needs to pro-actively exchange application messages to ex-
plicitly monitor delays (e.g., by means of round-trip time estimations as shown in References [14,
15]): an unnecessary communication overhead leading to an additional energy expenditure. Be-
sides the missing feedback on data transmissions, BLE applications are also unable to retrieve any
link-quality information of a BLE connection from the BLE black box in a standard-compliant
way.
Different AFH behavior. The link-quality information of a BLE connection is indeed monitored
internally by the BLE controller as part of the AFH mechanism. As mentioned above, the AFH
mechanism of BLE autonomously classifies the available portions of the RF spectrum into BLE
channels of good and bad link quality. Once classified as bad, a channel may be blacklisted (dis-
abled) at runtime and therefore not be used by a BLE connection until it is whitelisted (re-enabled)
again. Although the primitives to black- and whitelist BLE data channels are standardized by the
BLE specification [5], how to measure a channel’s link quality and when to actually blacklist a
channel is not defined and is left up to the vendor of the BLE platform.

This causes different BLE platforms to have vastly diverse performance, especially in the pres-
ence of external radio interference, as we show in Section 3. This, as a consequence, exacerbates
the problem of achieving timely BLE communication even further.
Contributions. In this article, we first experimentally study the impact of radio interference on
the latency of BLE communications. After showing that the RF noise present in common office en-
vironments can significantly decrease the performance of BLE systems, we systematically analyze
the timeliness of BLE communications under different interference patterns. Our analysis reveals
that, in specific scenarios, state-of-the-art implementations of BLE’s AFH mechanism are unable
to cope with the surrounding interference, leading to long delays that may be unacceptable for
applications used in safety-critical domains.

To improve the timeliness of BLE in noisy RF environments, we revise the model proposed by
Spörk et al. [31], such that it can be used by an application to adapt its connection parameters
at runtime. We do so by expressing the impact of interference in terms of the number of connec-
tion events necessary to complete a successful data transmission (nCE ). We show that this quantity
can be estimated using the timing information of commands sent over the Host Controller In-
terface (HCI), the standardized interface between host processor and BLE controller. This allows
applications compliant to the BLE specification [5] to estimate nCE without introducing any extra
communication overhead or additional energy cost.

We experimentally show that the use of HCI timing information allows a more fine-grained and
efficient nCE estimation than the exchange of application-level messages to compute the round-
trip time. Furthermore, we illustrate how a generic BLE application can efficiently make use of
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Fig. 1. BLE connection between slave and master.

recent nCE estimations to adapt its connection interval at runtime to improve the timeliness of its
communications in noisy RF environments.

Experiments on popular BLE platforms, such as the Nordic Semiconductor nRF52840 DK [18],
the Broadcom BCM43439 [23], the Qualcomm CSR8510 A10 [22], and the Panasonic PAN1762
[19], confirm that BLE applications estimating the nCE and adapting their connection parameters
at runtime following the approach presented in this article are able to cope with radio interference
and to effectively increase their timeliness in noisy RF environments.

After providing the required background information on connection-based BLE communication
in Section 2, this article makes the following contributions:

• We experimentally study the latency of BLE communications, using three popular BLE plat-
forms with different AFH implementations in the presence of radio interference, and show
that BLE applications may incur long and unpredictable transmission delays (Section 3).

• We revise the timeliness model in Reference [31] by introducing the nCE metric and show
how to estimate its value using only information available to a BLE host (Section 4).

• We implement our approach using Zephyr on the nRF52 radio (Section 5) and experimen-
tally evaluate the accuracy and efficiency of the nCE estimation carried out using timing
information of HCI commands (Section 6).

• We show how an application using recent nCE measurements and our revised timeliness
model can adapt its connection interval at runtime (Section 7) and increase its timeliness
in different noisy RF environments, independently of the used AFH implementation
(Section 8).

After describing related work in Section 9, we conclude our article in Section 10, along with a
discussion on future work.

This is an extended version of Reference [32], which includes a more detailed investigation
of BLE’s transmission latencies in different environments using multiple BLE platforms and an
extensive evaluation of the dynamic behavior of our proposed adaptation scheme in noisy RF
environments.

2 CONNECTION-BASED BLE COMMUNICATION
Compared to the simpler connection-less communication mode making use of three advertisement
channels to broadcast short data packets, connection-based BLE provides bidirectional data trans-
fer between a slave and a master. After an initial setup phase using connection-less primitives,
connection-based communication takes place during connection events (N0 . . . Ni ), as shown in
Figure 1.

The time between the start of two consecutive connection events is defined by the connection
interval (conn_int). During a single connection event, master and slave exchange link-layer pack-
ets that may carry application data (yellow). In case no data needs to be sent, master and slave
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simply exchange link-layer keep-alive packets (dark blue), which only carry the mandatory link-
layer header and are used to keep the connection active.

The duration of a connection event depends on the number and the size of exchanged link-layer
packets and is limited by the maximum connection event length (tCE ). Every connection event starts
with a transmission from the master, to which the slave responds. Master and slave keep exchang-
ing link-layer data packets until they have all been successfully sent or until tCE is reached. The
last link-layer packet during a connection event is always sent from the slave to the master, after
which both devices turn off their radio and resume communication at the next connection event.

In the example shown in Figure 1, during connection event N0, the master starts the connection
event by sending a keep-alive packet to the slave. The slave has data to transmit and therefore
responds with a link-layer data packet. Because the slave sends data instead of only a keep-alive
packet, its transmission time is longer than the master’s. During connection event N1, master
and slave have no data to send and therefore only exchange the mandatory keep-alive packets. In
connection event N2, the master transmits data by sending a data packet. Because the transmission
data of the master exceed the maximum link-layer data packet length, the master waits for a link-
layer packet from the slave before completing its data transmission. The slave responds with a
link-layer keep-alive packet within the same connection event.

Using connection-based BLE, the link layer automatically handles the acknowledgment (ACK)
of packets and link-layer flow control using a 1-bit ACK field and a 1-bit sequence number in the
header of every link-layer packet (both keep-alive and data packets). In case a link-layer packet
is not successfully received, it is automatically re-transmitted by the BLE link layer without any
notification to the upper BLE stack layers or the application.
Data channel selection. At the beginning of every connection event, 1 out of 37 possible BLE
data channels is selected by the adaptive frequency hopping (AFH) mechanism. A new channel
is chosen for every connection event and is used by master and slave to transmit and receive all
packets until the end of the ongoing connection event. All 37 possible BLE data channels (0 to 36)
are located in the unlicensed 2.4 GHz ISM band. The latter, however, is also used by other wireless
communication technologies, such as Wi-Fi, Classic Bluetooth, and IEEE 802.15.4, that may inter-
fere with ongoing BLE communications, leading to link-layer packet loss and re-transmissions.
The AFH mechanism may choose only a subset of the 37 data channels, defined by the channel
map (Cmap ) set by the BLE master during connection setup.

To mitigate the effect of co-located wireless applications or multi-path fading, implementations
of the AFH mechanism may blacklist any BLE data channel with poor link quality by updating
the Cmap of the BLE connection at runtime. A data channel disabled in the Cmap will not be used
for communication but may be whitelisted again by updating the connection’s channel map. Both
black- and whitelisting of BLE data channels is performed using standardized BLE commands
and may only be initiated by a BLE master. Although these commands are standardized, how to
measure the link quality of the BLE data channels and when to black- and whitelist individual
channels is not specified by the Bluetooth specification. This means that BLE devices are likely
to implement the AFH mechanism differently while still being standard-compliant. This may lead
to divergent performance of the BLE connection under external radio interference, depending on
which BLE radio platform, and therefore AFH implementation is used as a BLE master.

The BLE specification [5] defines a mandatory delay of at least six connection events between
a slave receiving theCmap and the latter being used for actual communication. A slave is required
to use the updated channel map but cannot impose nor suggest changes in Cmap to the master in
a standardized way. This can lead to long transmission delays in case a source of interference is
located near the slave and is not detected by the master, as we show in Section 3.
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Transmission latency. Several models capturing the transmission latency of application data
sent over a BLE connection exist [9, 13, 25, 31]. However, only the model proposed by Spörk
et al. [31] uses information that is typically available from a BLE radio and can hence be directly
used by an application to adapt its connection parameters at runtime. According to this model [31],
the upper bound on transmission latency of application data sent over a BLE connection on an ideal
channel can be computed as:

tmax = �D/F � · conn_int + tCE , (1)

where D is the data length in bytes, F is the maximum number of bytes that may be transmitted
during a single connection event, conn_int is the length of the connection interval, and tCE is the
maximum length of a connection event [31].

As we show in Section 3, an application cannot rely on this model to compute an upper bound
on its end-to-end latency in noisy environments. In our experiments, interference causes several
link-layer re-transmissions leading to transmission delays of up to 1,657 ms, which is 537% higher
than the maximum expected transmission latency (tmax = 260 ms) predicted by this model.

3 BLE LATENCY IN NOISY RF ENVIRONMENTS
To demonstrate the impact of radio interference on a BLE connection, we experimentally show
that RF noise in a common office environment leads to high transmission latencies over BLE con-
nections (Section 3.1). We use a testbed with nine BLE nodes (Section 3.2) to measure the latency
of individual data packets in detail. Furthermore, we perform our tests with three popular BLE
platforms acting as BLE master to investigate how different implementations of BLE’s AFH mech-
anisms adapt the data channel map over time (Section 3.3). Based on our results, we highlight the
specific scenarios in which the tested AFH implementations are unable to cope with the surround-
ing interference, leading to long delays (Section 3.4).

3.1 Latency in a Common Office Environment
We start by evaluating the transmission latency of a BLE application running in a common office
environment for 48 hours. We use an nRF52840 DK [18] node as slave and connect it via IPv6-over-
BLE to a Raspberry Pi 3 (RPi3) master [23] that uses its on-board Broadcom BCM43439 radio for
BLE communication. Master and slave have a distance of approximately two meters with direct
line-of-sight. After the IPv6-over-BLE connection is set up, the slave transmits a 29-bytes-long
UDP packet (resulting in 80 bytes of link-layer payload) to the master once every second. For each
UDP packet, we measure the transmission latency (tlatency ) as the time difference between the
slave’s application issuing the send command to the BLE radio and the master’s application being
notified about the successful reception of the packet from the slave.

The two BLE nodes can send F = 128 bytes during a single connection event and have a max-
imum connection event length of 10 ms. When using the model shown in Equation (1) with
conn_int = 250 ms, an application would expect a maximum transmission latency tmax = 260 ms
for each UDP packet.

Figure 2 shows the percentage of data packets that exceed this upper bound on transmission
latency over the 48 hours. Each bar refers to 15 minutes, i.e., 900 UDP transmissions. During day-
time, when the office is populated with employees, up to 21.74% of the UDP packets sent within
15 minutes experience a transmission latency higher than tmax . Several packets even experienced
a latency above 1000 ms, i.e., four times higher than tmax . During nighttime, instead, when the
office is at its quietest, only a minimal number of packets exhibit a latency above 260 ms.

These results show that the RF noise present in a common office environment can have a sig-
nificant impact on the transmission latency of connection-based BLE, despite the use of the AFH
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Fig. 2. Percentage of data packets exceeding tmax across 48 hours in a common office environment when
using a Raspberry Pi 3 with its on-board Broadcom BCM43439 radio as BLE master. During daytime, up to
21.8% of the transmitted packets are delayed due to surrounding interference.

mechanism. To get a deeper understanding of the impact of different sources of radio interference
on the BLE transmission delay, we investigate next the performance of BLE in a systematic way.

3.2 Experimental Setup
We perform our experiments on our testbed facility, which allows us to have fine-grained control
over the RF noise experienced by each BLE node in our testbed.
Testbed facility. The testbed consists of nine RPi3 equally distributed over a University lab (6×10
meters) that is kept vacant during our experiments. Each RPi3 runs the Raspbian OS and is con-
nected via USB to one BLE node (nRF52840 DK device). All RPi3 are connected via Ethernet and
use NTP for time synchronization, providing us with the same notion of time across the testbed.
Each RPi3 is also augmented with the open-source D-Cube board [26, 27], which allows us to
accurately measure the power consumption of each nRF52840 DK device over time.
Generating interference. All RPi3 in the testbed are used to re-program the BLE nodes and to
monitor the status of each experiment by logging data in persistent memory. We further use the
RPi3s in the testbed to generate Bluetooth and Wi-Fi interference using their on-board Broadcom
BCM43439 radio chip [23]. To generate Bluetooth interference, we configure each RPi3 to create a
point-to-point Bluetooth connection with another RPi3 and to transmit RFCOMM packets with a
length of 1000 bytes every 11.034 ms, resulting in an RFCOMM data rate of 725 kbits/s. To create
Wi-Fi interference, we let each RPi3 generate IEEE 802.11 b packets of configurable length and
configurable rate on a given Wi-Fi channel and with a transmission power of 30 mW using JamLab-
NG, an open-source tool to generate repeatable and reproducible Wi-Fi interference [28].
BLE master. We use one of the RPi3 as BLE master for all our tests. In addition to the nRF52840
DK node, this RPi3 is connected to three additional BLE devices: (i) the RPi3’s on-board Broadcom
BCM43439 radio [23], (ii) a Qualcomm CSR8510 A10 USB-BLE dongle [22], and (iii) a Panasonic
PAN1762 USB-BLE dongle [19]. For every experiment, the RPi3 selects one of these three con-
nected radios to connect to nearby IPv6-over-BLE slaves. When an IPv6-over-BLE connection is
established, the master starts a UDP server that waits for incoming UDP packets. Every time a
UDP packet is received, its payload and reception time are logged locally via the serial interface
of the node.
BLE slave. We use each of the nRF52840 devices (except the one connected to the RPi3 acting as a
master) as BLE slave. Each slave waits for the BLE master to initiate an IPv6-over-BLE connection
and sends a UDP message to the master every second once the connection is established. Each
UDP message has a length of 29 bytes (resulting in a BLE link-layer packet length of 80 bytes) and
carries an eight-digit sequence number in its payload. Whenever the slave sends a UDP message,
transmission time and sequence number are logged locally via the serial interface of the node. The
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Fig. 3. Packet latency (tlatency ) and data channel map of a BLE connection under no external interference
for three different BLE radios used at the Raspberry Pi 3 acting as master.

slave application sits on top of the Zephyr OS [33] and uses its existing IPv6-over-BLE stack. Note
that only one slave is used in an experiment to avoid self-interference.

3.3 Experimental Results
Using our testbed setup, we experimentally investigate the loss induced by radio interference on
link-layer data packets and their resulting transmission latency (tlatency ) of individual data packets
sent from slave to master. For every experiment, the RPi3 uses one of its three BLE radios. Both
master and slave make use of conn_int = 250ms , F = 128bytes , and tCE = 10ms . As discussed in
Section 3.1, we expect the upper bound on each transmission tmax to be 260 ms (see Equation (1)).

3.3.1 No External Interference. We first analyze the latency of data transmissions in the pres-
ence of no external interference in our testbed. We measure the packet latency (tlatency ) of every
data transmission as the time difference between the slave issuing the send command and the
master being notified about the successful packet reception, as described in Section 3.1.

Each plot in Figure 3 shows tlatency (top) and the data channel map (bottom) of a BLE connection
between a master and a slave communicating at a distance of 10 meters with direct line-of-sight.
Data packets exceeding tmax = 260ms (shown as horizontal dashed line) are marked as delayed.
After initializing the IPv6-over-BLE connection, we wait 30 seconds for the system to be stable
before we start to analyze the data transmission latencies (time 0 in Figure 3).

Our results show that every data packet is successfully transmitted, but some transmissions
occasionally exceed the threshold tmax = 260ms , even though no external radio interference is
being generated artificially. These delays are likely caused by packet loss resulting from multipath
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Table 1. Performance of the Three BLE Radios Acting as a BLE Master under No External Interference

Radio DELAYED [%] AVG [ms] MED [ms] 90% [ms] 99% [ms] MAX [ms]
Broadcom 6.33 158.8 165.0 248.0 467.0 629.0
CSR 2.82 150.7 153.0 233.0 400.0 501.0
Panasonic 10.14 173.2 179.0 261.0 419.0 519.0

The table shows the percentage of delayed packets (DELAYED), the average (AVG), median (MED), 90 and 99 percentile
(90% and 99%), and maximum experienced transmission delay (MAX) over 10 test runs per radio.

fading in our testbed or beaconing activities of nearby Wi-Fi access points. As Figure 3 shows, these
delays occur for each of the three BLE platforms used. Table 1 summarizes the results obtained
after performing this experiment 10 times for each employed BLE platform. We can observe that,
depending on the used BLE master radio, a fraction of the data transmissions (≤10%) exceed tmax .

Furthermore, we see that non-delayed data transmissions (marked as OK in Figure 3) experience
a tlatency between tCE and tmax . This is caused by the unsynchronized schedules of BLE application
and BLE connection. As discussed in Section 2, an application can issue a data transmission at
any time, but the data will actually be sent during the next upcoming connection event. In our
experiments, the application issues data transmissions slightly faster than the schedule of the BLE
connection. This causes the time between the application issuing and the BLE connection actually
transmitting a packet (shown as tF in Figures 9 and 10) to rise, which results in a linearly increasing
tlatency . When the time between issuing and transmitting a packet gets higher than tmax , the
packet is sent one connection event earlier, which results in a tlatency of approximately tCE in
such a case.

3.3.2 Bluetooth Interference. Next, we analyze the latency of data transmissions in the presence
of classic Bluetooth interference. Similar to BLE, Bluetooth also uses the 2.4 GHz ISM band and
makes use of frequency hopping to mitigate external interference by hopping to a new channel
every 625 μs [5]. As described in Section 3.2, we use the RPi3 in the testbed to create three simul-
taneous Bluetooth connections, each transmitting with an RFCOMM bandwidth of 725 kbits/s.
Similar to the experiments in Section 3.3.1, we measure the packet latency (tlatency ) as the time
difference between the slave issuing the send command and the master being notified about packet
reception.

Each plot in Figure 4 shows tlatency (top) and the data channel map (bottom) of a BLE connection
between a master and a slave communicating at a distance of 10 meters with direct line-of-sight.
Again, packets exceeding tmax = 260ms (shown as horizontal dashed line) are marked as delayed.
After initializing the IPv6-over-BLE connection, we wait 30 seconds for the system to be stable
before we simultaneously start interfering on all three Bluetooth connections (time 10 in Figure 4).

Our results show that every UDP packet is, eventually, successfully received. However, Blue-
tooth interference causes between 10% and 15% of all transmissions to be delayed, as shown in
Table 2.

Furthermore, Figure 4(a) shows that the AFH implementation of the Broadcom BCM43439 is
trying to update the data channel map to mitigate the effect of the Bluetooth interference on
the BLE connection. However, the master is not able to accurately predict the frequencies used
by Bluetooth and its blacklisting strategy does not help in mitigating the impact of Bluetooth
interference on the BLE connection. The Qualcomm CSR8510 A10 radio only occasionally updates
the data channel map, because of the nearby Bluetooth interference, leading to 1.55% more packets
being delayed compared to the Broadcom radio. Figure 4(b) shows a test run where the Qualcomm
radio does not update its data channel map under Bluetooth interference, the observed behavior
of this platform in our tests. The Panasonic PAN1762, shown in Figure 4(c), does not update the
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Fig. 4. Packet latency (tlatency ) and data channel map of a BLE connection under Bluetooth RFCOMM in-
terference for three different BLE radios acting as a BLE master.

Table 2. Performance of the Three BLE Radios Acting as a BLE Master under
Bluetooth RFCOMM Interference

Radio DELAYED [%] AVG [ms] MED [ms] 90% [ms] 99% [ms] MAX [ms]
Broadcom 10.62 166.9 163.0 265.0 502.0 732.0
CSR 12.17 160.8 147.0 266.0 510.0 825.0
Panasonic 14.88 184.3 179.0 271.0 519.0 755.0

The table shows the percentage of delayed packets (DELAYED), the average (AVG), median (MED), 90 and 99 percentile
(90% and 99%), and maximum experienced transmission delay (MAX) over 10 test runs per radio.

channel map, which leads to almost 15% of all data transmissions being delayed, as summarized
in Table 2.

Note that the same effect shown in Figure 4 is experienced by every BLE slave in our testbed,
even those that are only three meters away from the master and have direct line-of-sight.

3.3.3 Wi-Fi Interference. We investigate next the impact of Wi-Fi interference on a BLE con-
nection. Following the setup described in Section 3.2, we generate Wi-Fi interference near master
and slave.
Wi-Fi interference near the master. The plots in Figure 5 show the measured tlatency (top)
and used data channel map (bottom) of a BLE connection in the presence of Wi-Fi interference
located near the master. Also in this case, master and slave are at a distance of 10 meters with
direct line-of-sight. After an initial delay of 30 seconds to let the IPv6-over-BLE connection set up,
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Fig. 5. Packet latency (tlatency ) and data channel map of a BLE connection under Wi-Fi interference near
the master for three different BLE radios acting as a BLE master.

Table 3. Performance of the Three BLE Radios Acting as a BLE Master under
Wi-Fi Interference Near the Master

Device DELAYED [%] AVG [ms] MED [ms] 90% [ms] 99% [ms] MAX [ms]
Broadcom 12.42 175.9 171.0 361.0 629.0 881.0
CSR 8.09 155.1 144.0 253.0 483.0 949.0
Panasonic 27.22 247.2 205.0 502.0 1,011.0 1,657.0

The table shows the percentage of delayed packets (DELAYED), the average (AVG), median (MED), 90 and 99 percentile
(90% and 99%), and maximum experienced transmission delay (MAX) over 10 test runs per radio.

we let an RPi3 near the BLE master generate Wi-Fi traffic on channel 11 in bursts of 30 seconds
(time 10 to 41 s). We pause the Wi-Fi interference for 30 seconds before starting to interfere again
for approximately 30 seconds (time from 70 to 100 s). This inference pattern mimics a rate-limited
Wi-Fi device downloading two large files from the Internet, with a pause between the two files.

Similar to the previous experiments, our results show that every UDP packet is eventually re-
ceived. We further see that the AFH implementations of the Broadcom and Qualcomm radios,
shown in Figure 5(a) and Figure 5(b), respectively, are successfully able to detect the Wi-Fi inter-
ference and mitigate its effects on the BLE connection. Despite the heavy traffic generated on Wi-Fi
channel 11, both BLE radios blacklist the affected BLE data channels (18 to 31) as soon as they de-
tect their poor link quality. As Table 3 shows, this results in only 13% and 8% of all transmissions
being delayed for the Broadcom BCM43439 and Qualcomm CSR8510 A10, respectively.
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Fig. 6. Packet latency (tlatency ) and data channel map of a BLE connection under Wi-Fi interference near
the slave for three different BLE radios acting as a BLE master.

The AFH implementation of the Panasonic PAN1762, however, does not seem to update the data
channel map according to the experienced Wi-Fi interference and is therefore not able to mitigate
its effect on the BLE connection. This leads to 27% of transmissions being delayed and a maximum
delay of 1657 ms, which is approximately 6.4 times tmax .
Wi-Fi interference near the slave. Using the above setup, we now let the RPi3 near the slave
generate the same Wi-Fi pattern. The plots in Figure 6 show the measured tlatency (top) and used
data channel map (bottom) of a BLE connection in the presence of Wi-Fi interference near the
slave.

Once again, every UDP packet is, eventually, successfully received. However, compared to the
experiments shown in Figure 5, this time all three AFH implementations are mostly unable to
mitigate the effects of Wi-Fi interference on the BLE connection. During Wi-Fi bursts, several
UDP messages are significantly delayed, some even with tlatency ≥ 6 · tmax , independent from the
used BLE radio.

As Figure 6(a) shows, the Broadcom BCM43439 radio does not effectively detect the Wi-Fi in-
terference and therefore only blacklists a subset of the BLE data channels affected by Wi-Fi. The
Qualcomm CSR8510 A10 is able to successfully blacklist more of the BLE data channels experienc-
ing Wi-Fi interference1 after a longer delay of approximately 90 seconds between the beginning

1Our measurements suggests that the Broadcom BCM43439 and the Qualcomm CSR8510 A10 use the signal-to-noise value
of each BLE data channel to estimate its link quality. Further, our data indicate that the Qualcomm radio is using a more
sensitive signal-to-noise threshold and therefore blacklists BLE data channels more aggressively, as shown in Figure 6.
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Table 4. Performance of the Three BLE Radios Acting as a BLE Master under
Wi-Fi Interference Near the Slave

Device DELAYED [%] AVG [ms] MED [ms] 90% [ms] 99% [ms] MAX [ms]
Broadcom 28.7 289.5 236.0 923.0 1871.0 1921.0

CSR 26.7 255.6 198.0 578.0 1114.0 1168.0
Panasonic 30.2 307.4 208.0 661.0 1496.0 1624.0

The table shows the percentage of delayed packets (DELAYED), the average (AVG), median (MED), 90 and 99 percentile
(90% and 99%), and maximum experienced transmission delay (MAX) over 10 test runs per radio.

of Wi-Fi interference and the data channel map being updated, as shown at time 91 in Figure 6(b).
This delayed data channel map adaptation, however, does not significantly improve the perfor-
mance of the Qualcomm radio in this scenario. Similar to the previous experiments, the Panasonic
PAN1762 does not update BLE data channel map under Wi-Fi interference near the slave, as shown
in Figure 6(c).

As Table 4 summarizes, between 26% and 30% of all data transmissions are delayed in this ex-
periment with maximum transmission delays between 1,168 ms and 1,921 ms. All three BLE radios
used as master fail to mitigate the effect of Wi-Fi interference near the slave on the BLE connection.

The reason for this outcome lies in the inability of the BLE radios to effectively detect the Wi-Fi
interference and the lack of a subsequent data channel map update. The BLE slave would be able
to detect the poor quality of the data channels affected by Wi-Fi traffic. However, it cannot update
the data channel map in a standardized way according to the BLE specification, as discussed in
Section 2.

3.4 Lessons Learned
Our experiments show that, regardless of the platform used, BLE connections are eventually able
to successfully transmit all data packets, even under heavy Wi-Fi or Bluetooth interference, hence
confirming BLE’s high reliability highlighted by Reference [30]. Although no data packet is lost,
however, we have observed that the transmission latency significantly increases under interfer-
ence, even up to a value of almost two seconds, i.e., eight times tmax , as shown in Table 4.
Inefficiency of AFH implementations. In particular, our experiments highlight that, in two sit-
uations, the implementations of the AFH algorithm used by the three tested BLE radio platforms
are unable to cope with surrounding interference, leading to long delays. First, the AFH mecha-
nism loses its efficacy in the presence of interference generated by other radio technologies making
use of frequency hopping, such as Classic Bluetooth. Second, in the presence of Wi-Fi interference
located close to the slave, the master is mostly unable to efficiently detect the RF noise and miti-
gate its effects by updating the list of blacklisted channels. We expect this to be the case also for
surrounding networks making use of channel hopping (e.g., networks based on TSCH).

In all these situations, the number of re-transmissions performed by a BLE connection drasti-
cally increases, leading to high latencies that may be unacceptable for safety-critical BLE applica-
tions such as health care monitoring [4, 12]. To get any information about transmission latencies,
a BLE application needs to explicitly monitor the connection, e.g., using application acknowledg-
ments.
Diversity of BLE radios. Furthermore, the three used BLE radios, each having its specific—yet
standard-compliant—implementation of the AFH mechanism, behave differently under the tested
interference scenarios. On the one hand, the Broadcom BCM43439 and Qualcomm CSR8510 A10
platforms are able to effectively and rapidly mitigate the effects of Wi-Fi interference near the
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master on the BLE connection, as shown in Section 3.3. Indeed, in this scenario, the Broadcom and
Qualcomm radios are both able to sustain a rate of delayed packets below 12.5%. On the other hand,
the Panasonic PAN1762 radio never updates the BLE data channel map in all of our experimental
settings shown above. This leads to a significantly higher percentage of delayed packets, between
10% and 31% in our four interference scenarios, when using the Panasonic PAN1762 compared to
the other two BLE radio platforms. Such high rates of delayed packets, however, may be unaccept-
able for real-time applications with stringent bounds on data transmission latencies [3, 4, 10, 12].

This diverse behavior of various BLE radios makes it almost impossible to statically select suit-
able BLE communication parameters depending on the application’s latency requirements. During
development of a BLE slave application, for example, a developer needs to first predict the noise in
the RF environment of the future application to choose the right connection parameters, which is
often not possible. Furthermore, the AFH behavior of the BLE master, to which the slave will con-
nect to, needs to be anticipated to choose connection settings that are able to sustain the maximum
latency. Failing to select suitable connection parameters will likely result in several transmissions
with increased latencies and calls for runtime adaptation.
Need for runtime adaptation. To avoid such long latencies, delay-sensitive BLE applications
need to adjust the connection parameters of their ongoing connections, e.g., by lowering the con-
nection interval according to changes in the link-quality. However, this task is complicated by
the fact that the BLE specification [5] does not provide a standardized way for an application to
directly get feedback about ongoing link-layer (re-)transmissions or about the quality of a BLE
connection. As a consequence, to be aware about the timeliness of its communications, a BLE ap-
plication needs to pro-actively let the communicating nodes exchange application-level messages
to explicitly monitor delays, e.g., by means of round-trip time estimations. Pro-actively exchanging
application messages, however, is an unnecessary communication overhead and an additional en-
ergy expenditure that is undesirable for resource-constrained BLE nodes. This, however, only hints
to an application whether there is a need to adjust its connection parameters (e.g., select a lower
connection interval to decrease the latency), but not how these parameters should be modified.
Without a model supporting this decision, an application can only try to significantly lower the
connection interval (at the cost of a higher energy expenditure) or slightly lower the connection
interval (preserving its energy budget, but at the risk of suffering poor performance).

In the next section, we show that any application compliant to the BLE specification [5] can
estimate the impact of interference on an ongoing connection by estimating the number of con-
nection events necessary to complete a successful data transmission. We show how this quantity
can be measured without any extra communication overhead or energy cost using the timing in-
formation of HCI commands. To adapt the connection interval to the BLE host, however, models
such as References [9] and [25] are not usable, because they require information that is only avail-
able on the BLE controller. A model needs to only use information available on BLE hosts to be
usable by most BLE applications.

4 MEASURING AND MODELING BLE LATENCY
In this section, we first revise the model shown in Equation (1) to capture the nCE , i.e., the number
of connection events necessary to complete a successful data transmission (Section 4.1). After
discussing the unavailability of link-layer information on standard-compliant BLE host devices
(Section 4.2), we show how a BLE application can estimate nCE autonomously in two ways. First,
we show how to relatenCE to the round-trip time measured by introducing application-layer ACKs
(Section 4.3). As this method is inaccurate and increases the communication overhead as well as
the energy expenditure of BLE devices, we propose a second way to estimatenCE that makes use of
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Fig. 7. Standard BLE and IPv6-over-BLE stack.

the timing information of commands sent over the standardized Host Controller Interface between
host processor and BLE controller (Section 4.4).

4.1 Revising the BLE Timeliness Model
We start by revising the timeliness model from Reference [31] shown in Equation (1). The latter
describes how an application data packet of length D (bytes) is split into data fragments with
a maximum size of F (bytes), where each fragment is transmitted during a separate connection
event. As discussed in Reference [31], the model relies on ideal channel conditions and neglects
the effects of link-layer packet loss on the transmission delay of the individual fragments.

To model the effects of link-layer packet loss and retransmissions, we introduce the nCE metric,
which expresses the number of connection events necessary to successfully transmit individual data
fragments into the model as:

tmax = ��
�D/F �∑

f =1
nCEf · conn_int�� + tCE , (2)

where �D/F � captures the fragmentation of data with lengthD into one or multiple data fragments
of length F , and nCEf is the nCE of a single data fragment f .

By knowing the nCE of each fragment, Equation (2) now captures the impact of RF noise on the
quality of a BLE connection and is hence able to provide an upper bound on transmission delay.
This, however, requires a precise nCE measurement.

4.2 Challenges in Measuring nC E

The main challenge in measuring nCE on a standard-compliant host device is the nature of the
BLE communication stack. The latter is split into two separate parts, a BLE controller and a BLE
host [5], that exchange commands via a standardized Host Controller Interface (HCI) (see Figure 7).
To simplify the development of BLE applications, the controller implements the physical and link
layer—practically acting as a black box to the host running the application.

The controller provides all services needed for connection-based BLE communication, such as
autonomous link-layer retransmissions and acknowledgments, timing of connection events, and
data channel selection (including blacklisting) using the AFH mechanism. Controllers are often
separate chips that are closed-source and cannot be accessed or modified by developers. The only
way for a host to interact with a controller is to provide high-level parameters and listen for HCI
events. No info about the BLE connection, like the number of retransmissions, is passed to the
host.

The BLE host implements the upper communication layers of the BLE stack, including the
L2CAP layer, the ATT/GATT protocols, and support for IPv6 communication. The BLE HCI dri-
ver provides all upper host layers with the functionality to interact with the BLE controller by
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Fig. 8. RTT-based nCE estimation for a slave transmitting a data packet (P) and receiving an ACK (A).

exchanging HCI commands and events. In contrast to the closed BLE controller, the open-source
host provides access to all the upper BLE stack layers, allowing developers to extend the controller
to add new functionality that may be needed.

Due to the nature of the BLE stack, several challenges arise when measuring nCE on a host:
Packet transmission. The controller autonomously handles the scheduling of transmissions and
the ACK of packets in its transmission buffer. The host can use HCI commands to add a new data
packet to the transmission buffer of the controller, but it has no implicit control over its timing
and no information about when it has actually been sent. The host hence assumes that each packet
will be sent, eventually, as long as the underlying BLE connection is not dropped.
Buffer management. The controller implements its own management of both reception and
transmission buffer. The BLE host (and hence the application developer) has no direct control over
the controller’s buffers and can only request the available number of reception and transmission
buffers in the controller and their individual buffer length.
Channel selection. At connection setup, the link layer of the BLE master provides the data chan-
nel map to the slave. During an active connection, the controller of both slave and master au-
tonomously handles BLE data channel selection, including the blacklisting of data channels with
poor link quality. The BLE host, however, has no control or information over the data channel used
in the current or the upcoming connection events.
Link quality information. The BLE specification [5] does not provide any standardized prim-
itive allowing a host to retrieve link quality information about an ongoing BLE connection. Any
information about the received signal strength (RSS), the signal-to-noise ratio (SNR), or the num-
ber of retransmissions on a BLE data channel is limited to the link layer of the BLE controller. The
BLE host is hence unable to retrieve any of these low-level measurements in a standardized way.

Due to these challenges, directly measuring thenCE of an ongoing connection from the BLE host
is not possible. A host may, however, estimate the nCE using application-layer acknowledgments
or HCI information, as we show next.

4.3 Estimating nC E Using Round-trip Time
An application can estimate the number of connection events necessary to successfully transmit
individual data fragments by using application-layer ACKs and by measuring the round-trip time
(tRTT ): We refer to this form ofnCE estimation as RTT-basednCE . When carrying out an RTT-based
nCE estimation, every data transmission initiated by an application (master or slave) is confirmed
by an ACK from the other party’s application, as shown in Figure 8.

An application measures tRTT as the time between the instant in which it adds a data packet P
to the transmission buffer of the controller and the time in which it receives the application-layer
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ACK A in its reception buffer. The measured tRTT can be expressed as the sum of tP and tA:

tRTT = tP + tA,

where tP is the time it takes between P being added to the controller’s transmission buffer and
being received in the other party’s reception buffer. tA, instead, captures the time between P being
received into the receiving buffer and the subsequent application-layer ACK being received by the
application that originally sent P . Figure 8 shows an example in which a slave sends a data packet
consisting of a single fragment, and a master replies with an application-level ACK.

Both data exchanges (actual packet and application-layer ACK) can be modeled as individual
data transmissions, each with an upper latency bound tmax that is calculated using Equation (2).
For our model, we assume that data packet and ACK have the same lengthD. Furthermore, because
an application has no insight about the performance of each individual fragment, it can only derive
annCEf that is the same for all fragments involved in the data exchange (data packet and ACK). For
our model, we assume that data packet and ACK have the same length D and can hence calculate
tRTT as:

tRTT ≤ 2 · tmax or tRTT ≤ 2 · �D/F � · nCEf · conn_int + 2 · tCE .

By measuring tRTT , an application can hence estimate the average nCEf for all fragments in the
data exchange as:

nCEf =

⎡⎢⎢⎢⎢⎢
tRTT − 2 · tCE

2 · �D/F � · conn_int

⎤⎥⎥⎥⎥⎥ . (3)

Limitations. A basic requirement to be able to carry out RTT-based nCE estimation is that the
developer has full control over the application running on both master and slave (to generate the
ACK and to measure the round-trip time). This may not necessarily be the case, for example, when
a slave acting as IPv6-over-BLE node transmits IPv6 messages to an IPv6-over-BLE router (master).
Although a developer could force a round-trip time measurement using L2CAP ping messages as in
References [14, 15], using RTT-based nCE estimation might not be suitable for energy-constrained
slaves that need to limit the overall communication overhead. The same observation applies when
introducing application-layer ACKs, as they increase communication overhead and hence cause
an additional power consumption, as we show in Section 6.2.

Another limitation of RTT-based nCE estimation is that it assumes the same nCEf for all frag-
ments involved in the data exchange. On the one hand, this assumes the link to be symmetric,
which may lead to an underestimation of nCEf in case the data packet is retransmitted for sev-
eral connection events, but the ACK is received immediately. On the other hand, by estimating
an average nCEf for all fragments, RTT-based nCE estimation cannot capture the case in which
interference leads to a high nCEf for specific fragments. For example, data consisting of three seg-
ments is sent and fragments 1, 2 experience an nCE of 1 and fragment 3 an nCE of 4. This approach
estimates an nCE of 2 and therefore overestimates the quality of the BLE connection.

4.4 Estimating nC E Using HCI Timing Info
To tackle the limitations of RTT-based nCE estimations, we present another approach that es-
timates the number of connection events necessary to successfully transmit a data fragment by
using HCI timing information. We refer to this form of nCE estimation as HCI-based nCE estima-
tion. As HCI commands and events are standardized, any BLE-compliant host can make use of this
approach. Unlike RTT-based nCE estimation, which calculates a single nCE value over the whole
data transmission of D bytes, HCI-based nCE estimates the nCE of every individual data fragment
sent during the data exchange.
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Fig. 9. HCI-based nCE estimation for a BLE slave transmitting a packet (P) consisting of one data fragment.

4.4.1 Estimating nCE on a BLE Slave. Figure 9 shows the inner-working of HCI-based nCE
estimation for a BLE slave transmitting a packet P consisting of a single data fragment to the
master. Compared to Figure 8, one can notice that the master is no longer sending application-
layer ACKs after receiving a packet. Figure 9 also highlights a number of time-stamps (TADD ,
TF REE , and TRX ) that can be retrieved from the communication exchanges on the HCI.

Whenever an application needs to transmit data over the BLE connection, it uses the HCI
ACL data packet command to add data to the transmission buffer of the controller. We de-
fine this instant TADD and measure it in the HCI driver of the host. We also define TF REE as
the instant in which the buffer of the controller changes state and measure it by listening for
HCI_Number_Of_Completed_Packets events. The latter are issued from the controller when a
transmission buffer is freed due to successful data transmission.

Both in the absence (Figure 9(a)) and in the presence (Figure 9(b)) of link-layer errors, the only
available timing information that can be derived by the slave via the HCI is the time tT X elapsed
between the data packet being added to the controller’s transmission buffer (TADD ) and the buffer
being actually freed (TF REE ):

tT X = TF REE −TADD . (4)

According to Figure 9, tT X can be expressed as the sum of two components tF and tLL :

tT X = tF + tLL, (5)

where tF is the latency of a single data fragment (which may carry up to F bytes) into the master’s
reception buffer, whereas tLL captures the time between the reception of the data fragment into
the master’s reception buffer and the slave receiving the link-layer ACK and freeing the buffer
(TF REE ).

The latency of a single data fragment tF can be derived from Equation (2) by setting D = F as:

tF ≤ nCEf · conn_int + tCE . (6)

Compared to the data fragment that may have a length of up to 255 bytes according to the BLE
specification [5], the link-layer acknowledgment only has a length of 16 bits. We therefore as-
sume that the link-layer acknowledgment is successfully transmitted within the first transmission
attempt and neglect its duration, resulting in tLL = conn_int . In cases where the data are success-
fully transmitted but the link-layer acknowledgment is interfered, HCI-nCE overestimates the nCE
value of the packet transmission. With this assumption, we can calculate tT X (using Equation (5))
as:

tT X ≤ (1 + nCEf ) · conn_int + tCE . (7)

ACM Transactions on Internet of Things, Vol. 1, No. 2, Article 8. Publication date: April 2020.

8 Publications

– 133 –



Improving the Timeliness of BLE in Dynamic RF Environments 8:19

Fig. 10. HCI-based nCE estimation for a BLE master transmitting a single data fragment (nCEf = 1).

A BLE application using the HCI communication to measure tT X (using Equation (7)) can hence
estimate the current nCEf as:

nCEf =

⌈
tT X − tCE

conn_int

⌉
− 1. (8)

4.4.2 Estimating nCE on a BLE Master. HCI-based nCE estimation can be used on a master
device using the same approach and HCI timing information described in Section 4.4.1 (i.e., tT X =

TF REE −TADD ). The main difference compared to HCI-based nCE estimation on a slave is that the
link-layer ACK for the data fragment sent by the master comes within the same connection event,
as shown in Figure 10. Therefore, tLL is already captured by the maximum connection event length
tCE value in Equation (6). This allows us to calculate tT X as:

tT X ≤ nCEf · conn_int + tCE . (9)
An application running on the BLE master can hence estimate the current nCEf value using the
measured tT X as:

nCEf =

⌈
tT X − tCE

conn_int

⌉
. (10)

Compared to Equation (8), Equation (10) does not need to account for the delayed link-layer ac-
knowledgment received by the BLE slave (modeled by decreasing nCEf by 1 in Equation (8)).

We now have described two approaches, RTT-based nCE and HCI-based nCE , that allow BLE
applications to estimate the timeliness of their communication in a standard-compliant way and
do not need any link-layer information limited to the BLE controller. We describe next the imple-
mentation of RTT-based or HCI-based nCE estimation on the nRF52840 DK platform using the
Zephyr operating system (OS).

5 IMPLEMENTING nC E ESTIMATION ON BLE HOSTS
In this section, we present the implementation of a BLE slave using RTT-based or HCI-based
nCE estimation on the Nordic Semiconductor nRF52840 DK platform [18]. The latter embeds an
ARM Cortex-M4F application processor, an nRF52840 chip with 1,024 kB of flash and 256 kB of
memory, as well as a radio supporting BLE communication up to version 5. Note that the same
implementation can be used out-of-the-box on all nRF52 variants, including the nRF52832 with
512 kB of flash and 64 kB of RAM or even the nRF52810 with 192 kB of flash and 24 kB of RAM.

Since we use only standardized BLE functionality, our implementation can be ported on every
hardware platform that is compliant to the BLE specifications v4.1 and above. Even devices using
a proprietary communication interface between BLE host and controller such as the TI CC26xx
platform can use our approaches with just minor adaptations.

We use the Zephyr operating system [33] for implementing the BLE slave using our estimation
approaches. The Zephyr OS used for our implementation already includes a BLE communication
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stack (including IPv6-over-BLE support) that is fully compliant to the BLE specification. Further-
more, the Zephyr BLE stack on the nRF52 platform uses the standardized HCI to exchange infor-
mation between the BLE controller and the BLE host.

For our work, we focus on estimating the nCE on BLE slave devices, which are usually much
more constrained in their energy budget and processing power than BLE masters. By showing that
a constrained slave is able to accurately estimate nCE values, we also show that the more powerful
BLE master is able to do so. Furthermore, the latter receives link-layer acknowledgments for data
transmissions within the same connection event, as discussed in Section 4.4. This means that a
master is able to estimate nCE more accurately, because the master’s link-layer receives feedback
almost immediately after the data was successfully sent and does not need to wait for the link-layer
ACK until the next connection event, which may also be interfered, leading to an overestimation
of nCE .

5.1 RTT-based nC E Estimation
We start by implementing the RTT-based nCE estimation approach in the slave application de-
scribed in Section 3.2. For every UDP data message (with a UDP length of 29 bytes) sent by the
slave, the master responds with an 8-byte-long UDP acknowledgment. We measure the transmis-
sion time of every UDP message right before it is added to the transmission buffer of the controller.
The reception time is measured immediately after the application was notified about the incoming
application-layer acknowledgment from the master. Both timestamps measure the current system
uptime in milliseconds, which we retrieve by calling k_uptime_get().

After every successful data transmission, the BLE application calculates the round-trip time tRTT
of the recent data exchange and estimates the current nCEf value using Equation (3).

5.2 HCI-based nC E Estimation
We next implement HCI-based nCE estimation reusing the slave application from Section 3.2
and adding the nCE measurements to the BLE host in the HCI driver layer (hci_core). Ev-
ery time the host sends an HCI ACL Data Packet command to the BLE controller to trans-
mit application data, we store the current system uptime as TADD . When the BLE controller is-
sues an HCI_Number_Of_Completed_Packets event to notify the host about the successful data
transmission, we store TF REE as the current system uptime. TADD and TF REE are retrieved using
k_uptime_get() and are measured in milliseconds.

ThenCE estimation is performed in the HCI driver layer on the host using Equation (8) each time
the controller has successfully transmitted a data fragment. To provide BLE applications with the
possibility to retrieve the current nCEf when using HCI-based nCE estimation, we extend the HCI
driver with the function bt_hci_get_nce(), which returns the most recent nCEf estimate. This
function is a custom addition to the BLE stack and can be added to any BLE platform, independently
of the type of communication used between BLE host and controller (HCI or proprietary).

6 EVALUATING THE ACCURACY AND EFFICIENCY OF nC E ESTIMATION
We experimentally evaluate the estimation accuracy (Section 6.1) and energy efficiency (Sec-
tion 6.2) of RTT-based or HCI-based nCE estimation. We focus our evaluation on the BLE slave
device, since (i) it is typically more constrained in its energy budget and processing power than
the BLE master, and since (ii) the HCI-based nCE estimation on a slave is by design less accurate
than on a master due to the delayed link-layer ACK, as discussed in Section 4. In the experiments
of this section, we configure the BLE slave running on an nRF52 device to use one estimation ap-
proach at a time and connect it to a Pi 3 master using its on-board Broadcom BCM43439 radio for
communication.

ACM Transactions on Internet of Things, Vol. 1, No. 2, Article 8. Publication date: April 2020.

8 Publications

– 135 –



Improving the Timeliness of BLE in Dynamic RF Environments 8:21

Fig. 11. Accuracy of HCI-based and RTT-based nCE estimation for two connection intervals.

6.1 Accuracy
We make use of the same experimental setup described in Section 3.2. We use the Broadcom
BCM43439 radio as BLE master, run one estimation approach at a time, and measure the nCEf for
each data fragment by computing the end-to-end latency from slave to master tlatency as follows:

tlatency = TRX −TADD .

We then compute our baseline nCEf for each data fragment based on the measured tlatency as:

nCEf =

⌈
tlatency − tCE

�D/F � · conn_int

⌉
.

Note that, as described in Section 3.2, the RPi3 nodes connected to the master and the slave are
NTP-synchronized, giving us the same notion of time across the two nodes.

For both RTT-based and HCI-basednCE estimation, slave and master exchange 600 UDP packets
consisting of a single fragment using two connection intervals (62.5 and 125 ms) in the presence
of Wi-Fi interference near the slave. We repeat our measurements 10 times for each setting.

Figure 11 plots the percentage of UDP packets for which the nCEf has been correctly estimated,
overestimated, or underestimated (marked in green, orange, and red, respectively). We can clearly
see that the number of correctly estimated nCEf values is higher when using HCI-based nCE
estimation, especially in the presence of highly unreliable BLE connections (baseline nCEf ≥ 2).

Overall, HCI-based nCE estimation outperforms the RTT-based one by 0.42, 8.06, 60.87, and
47.82% for an nCEf of 1, 2, 3, and 4, respectively, in estimating the exact nCEf value (conn_int =
62.5 ms). Furthermore, Figure 11 also hints that HCI-based estimation is far less likely to underesti-
mate the nCEf value of a fragment than RTT-based estimation. HCI-based nCE estimation reduces
the number of underestimations by 29%, 80%, and 83% for an nCEf of 2, 3, and 4, respectively
(conn_int = 62.5 ms). Similar trends are observed when using a conn_int = 125 ms (Figure 11(b)).
The few cases in which HCI-based nCE estimation underestimates the baseline nCEf value
(≤0.9% of all cases) are caused by uncontrollable notification delays introduced by the OS on the
master (shown as tN in Figure 9).

6.2 Power Consumption
We measure the average power consumption of both RTT-based and HCI-based nCE estimation
under different interference patterns, following the same experimental setup described in Sec-
tion 3.2. We measure the power consumption of an nRF52840 slave using the D-Cube board [27].

Figure 12 shows the average power consumption for different connection intervals in absence
and in the presence of Wi-Fi interference. We can observe that, regardless of the connection
interval uses and of the presence of Wi-Fi interference, the RTT-based nCE estimation adds
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Fig. 12. Average power consumption of nCE estimators for different connection intervals and interference.

an extra 18% power consumption on the slave. This higher power consumption is due to the
additional exchange of application-level acknowledgments, which is unnecessary for HCI-based
nCE estimation.

When comparing the twonCE estimation approaches, we can clearly see that the HCI-basednCE
estimation is (i) more accurate (see Figure 11) and (ii) more power-efficient (see Figure 12) than the
RTT-based nCE estimation approach. Other existing BLE link-quality estimation approaches [14,
15] use application-level round-trip-time measurements and work similar to our RTT-based nCE
estimation approach, i.e., experience the same increased power consumption and less accuratenCE
values compared to HCI-based nCE estimation. For this reason, we will use only the HCI-based
nCE estimation approach to increase BLE timeliness for the remainder of this work.

7 INCREASING THE TIMELINESS OF BLE USING nC E

To increase the timeliness of BLE applications in noisy RF environments, we can use nCE informa-
tion to adapt the BLE connection interval at runtime to mitigate the presence of interference while
minimizing energy consumption (Section 7.1). Towards this goal, we can use a series of recentnCEf

estimates to predict the nCEf of upcoming data fragment transmissions (Section 7.2).

7.1 Adapting the BLE Connection at Runtime
Following Equation (2), a delay-sensitive BLE application is able to compute the maximum connec-
tion interval, allowing its communications to sustain an upper bound on the transmission delay
tmax despite the presence of surrounding interference. From Equation (2), we can derive:

conn_intmax ≤ tmax − tCE

�D/F � · nCEf �
, (11)

where nCEf � is the expected number of connection events necessary to successfully transmit up-
coming data fragments.

Depending on the conn_intmax computed using Equation (11), the slave application can request
a new connection interval from the master.2 conn_intmax represents the most energy-efficient con-
nection interval to be used to sustain the upper bound on transmission delay tmax —provided
that nCEf � correctly captures the expected number of connection events necessary to success-
fully transmit upcoming data fragments. We discuss in the next section how an application can
make use of the recent nCEf estimates to predict this value.

2To this end, the slave can use the standardized L2CAP CONNECTION PARAMETER UPDATE REQUEST. A master may change
the connection interval by issuing an LL CONNECTION UPDATE command. According to the BLE specification, there is a
delay of at least six connection events between the slave receiving the new connection interval and the latter being used.
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7.2 Predicting Future nC Ef
Values

Using a series of recent nCEf measurements, we can predict the expected number of connection
events necessary to successfully transmit upcoming data fragments (nCEf �). This allows us to find
the most efficient connection interval conn_intmax and adapt the BLE connection so future data
transmissions do not exceed the maximum transmission delay tmax . To achieve this goal, we use a
filtering approach that calculates the maximum nCEf value out of a given observation window of
L fragments. Research on IEEE 802.15.4 communication has shown that such a maximum filtering
approach can be used to select communication parameters that minimize the number of packets
exceeding an upper latency bound [16]. Using such a filtering approach, we can predict nCEf � as:

nCEf � =max[nCEf (t ), . . . ,nCEf (t − L)], (12)

where nCEf � is the predicted number of connection events necessary to successfully transmit
upcoming data fragments, whereas nCEf (t) to nCEf (t − L) are the latest nCEf estimates obtained
following the approach explained in Section 4.

As we show in Section 8.3, our simple and aggressive filtering approach is able to efficiently and
accurately detect changes in the RF environment and triggers a BLE connection parameter adapta-
tion accordingly. By using such a simple filtering approach, we can run our prediction mechanism
even on platforms with a very constrained energy budget and limited processing capabilities. Using
a more complex filtering approach, such as linear regression, may provide similar or slightly more
accurate nCEf predictions at the cost of additional processing overhead, leading to an increased
power consumption, which is undesirable for constrained IoT devices.
Finding an optimal L. We next experimentally investigate a suitable observation window length
L. We consider six different lengths (16, 32, 64, 128, 256, and 512) and compute nCEf � accord-
ing to Equation (12). We then instruct a BLE slave to adapt its connection interval according to
Equation (11) and experimentally measure (i) the number of delayed packets (i.e., the number of
packets whose latency exceeds the expected upper bound tmax ) and (ii) the energy consumption
of the slave over time. We make use of the same setup described in Section 3.2, i.e., a slave and a
master (using the Broadcom BCM43439 BLE platform) communicating using tmax = 260 ms, tCE =

10 ms, and F = 128 bytes in the presence of Bluetooth and Wi-Fi interference near the slave.
In principle, we expect the number of delayed packets to be high when using a short observation

window. When using a short L, the limited information about the amount of interference affecting
the channel in the recent past translates to an optimistic prediction (higher conn_int ). At the same
time, we also expect that, when using a longer L, at least one of the observed nCEf values captures
a burst of interference and hence results in a pessimistic prediction (lower conn_int ), leading to a
higher radio activity and, therefore, a higher energy consumption of the system.

Figure 13 shows the results of our evaluation. As expected, the percentage of delayed packets
decreases for larger observation windows, while the average power consumption of the system
increases. To find the optimal L, we calculate the power consumption necessary to transmit a
timely packet γ [μW /%] for the different values of L. Figure 13 (bottom) shows that selecting L =
64 offers a good trade-off between energy-efficiency and timeliness of BLE transmissions under
both Bluetooth (Figure 13(a)) and Wi-Fi (Figure 13(b)) interference. With this setting, only 0.6% of
all data transmissions exceed the latency bound, even under Wi-Fi interference.

8 EVALUATING BLE TIMELINESS IN NOISY RF ENVIRONMENTS WHEN USING nC E

In this section, we evaluate the adaptive scheme that we proposed in Section 7 in terms of the per-
centage of data packets exceeding the maximum packet latency. First, we systematically compare
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Fig. 13. Percent of delayed packets (top), average power consumption (middle), and power cost (bottom) for
different observation windows under Bluetooth and Wi-Fi interference.

a BLE slave using the proposed adaptation approach to a BLE slave using no connection param-
eter adaptation (Section 8.1). Second, we evaluate the adaptation approach in two different en-
vironments over 48 hours using three different BLE platforms (Section 8.2). Third, we investi-
gate in detail how the adaptation approach reacts dynamically to changes in the RF environment
(Section 8.3).

8.1 Systematic Evaluation
We compare the performance of a slave Sf ixed running an application using a fixed connection
interval to that of a slave Sadapt employing the adaptation approach proposed in this article. Sf ixed
selects its connection interval statically according to Equation (1) to sustain a maximum transmis-
sion delay tmax = 260ms . Sadapt , instead, makes use of Equation (11) and an observation window
length L = 64 to adapt its connection interval as described in Section 7.
Setup. Using the same setup described in Section 3.2, we let each of the two slaves transmit 500
UDP packets to a master (using the Broadcom BCM43439 radio) located at 10 meters’ distance
with direct line-of-sight. We run only one slave at a time and repeat each experiment 10 times. We
analyze the performance of Sf ixed and Sadapt in absence of RF noise, in the presence of Bluetooth
interference, and with Wi-Fi interference located close to the slave.
Results. Figure 14 shows the percentage of delayed packets and the average power consumption
of Sf ixed (orange) and Sadapt (red). We can clearly see that, while Sf ixed experiences an amount
of delayed packets between 6.8% and 24.6%, almost the entirety of packets transmitted by Sadapt
(at least 99.45%) are within the expected delay bounds. Adapting the connection interval at run-
time to mitigate the effects of surrounding radio interference comes, as expected, at the cost of
an increased energy consumption. Our experiments show that Sadapt incurs an additional power
consumption of 7.42% in absence of interference, and of 9.51% and 17.96% in the presence of Blue-
tooth and Wi-Fi interference, respectively. This increased energy consumption is caused by using
shorter connection interval settings during periods of high RF noise, which lead to a higher power
draw.
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Fig. 14. Delayed packets and power consumption of a slave with and without connection interval adaptation.

Fig. 15. When adapting its connection interval at runtime using an observation window of 64 fragments, a
slave connected to a Broadcom BCM43439 master is able to significantly increase the timeliness of its BLE
communications. Note the more granular y-axis of the top plot in this figure compared to Figure 2.

8.2 Long-term Evaluation
To prove the efficacy of our proposed method, we run the same application described in Section 3.1
in different indoor environments on three different BLE platforms.

8.2.1 Common Office Environments. We start by re-running the application in the office envi-
ronment shown in Section 3.1 populated with employees and use the same location of the nodes.
We configure the BLE slave to adapt its connection interval at runtime as described in Section 7 and
make use of an observation window of length L = 64 and an upper latency bound tmax = 260ms .

Figure 15 shows the number of delayed packets and the adaptation of the connection interval at
runtime across 48 hours. It is quite remarkable how at most 1.34% of the UDP packets sent within
15 minutes exceed the maximum latency bounds. In Figure 2, the number of delayed packets was
up to 21.74%. The average number of packets delayed in this experiment is 0.54% (compared to an
average of 6.18% obtained in Figure 2 when using no adaptation of BLE connection parameters).
This shows an improvement of a factor of 11.5 for the average number of packets delayed.

8.2.2 Student Laboratory. Next, we run our experiments in a student laboratory (as described
in Section 3.2) and compare the performance of a slave Sf ixed using a fixed connection interval
to a slave Sadapt using the proposed adaptation approach. Similar to the systematic evaluation in
Section 8.1, both Sf ixed and Sadapt try to sustain a maximum latency bound tmax = 260ms for their
data transmissions. While Sf ixed uses Equation (1) to select a fixed connection interval, Sadapt uses
Equation (11) and a window length L = 64 to adapt its connection interval at runtime as described
in Section 7.
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Fig. 16. Percentage of packets exceeding tmax across 48 hours in a student laboratory when using a fixed
connection interval and a Broadcom BCM43439 radio as BLE master.

Fig. 17. Percentage of delayed packets (top) and adapted connection interval conn_int (bottom) over 48 hours
in a student lab when using our adaptive approach and a Broadcom BCM43439 as BLE master. Please note
the more granular y-axis of the top plot in this figure compared to Figure 16.

For these experiments, however, we concurrently run Sf ixed and Sadapt in our student labora-
tory over the same 48-hour periods and connect each slave to a separate master. To ensure that
both slaves experience similar changes in the RF environment, we position both slaves next to
each other and put both masters at approximately the same location. Each slave has a distance of
approximately 10 meters and direct line-of-sight to their BLE master. As both BLE connections use
all 37 data channels and exchange data infrequently (sending a packet every second), the interfer-
ence from one BLE connection on the other is insignificant compared to the RF noise present in
the student lab.

In contrast to the experiments shown in Section 3, the lab is used by different student groups
during our experiments. We repeat this experiment for all three BLE platforms connected to our
masters.
Broadcom BCM43439 radio. For our first long-term lab experiment, each slave connects to one
of the Broadcom BCM43439 radios acting as master. Figure 16 shows the percentage of delayed
packets of Sf ixed over 48 hours. Over this period, on average, 2.7% of all transmissions exceed tmax ,
with a maximum of 8.65% of packets being delayed within a 15-minute period. Figure 17 shows the
percentage of delayed packets (top) and the used BLE connection interval (bottom) over the same
two-day period. We see that the connection interval is successfully adapted, resulting in an average
of 0.42% of all packets and a maximum of 0.99% of packets within 15 minutes being delayed.
Qualcomm CSR8510 A10 radio. Next, we perform the same experiment, but connect each slave
to a Qualcomm CSR8510 A10 radio acting as master. Figure 18 shows the percentage of delayed
data transmissions when using Sf ixed . We see that overall 7.23% of all packets are classified as
delayed, with a maximum of 14.32% packets being delayed within a 15-minute period. The reason
for this higher number of delayed packets, compared to the previous experiment, is that the lab
was used by students (and their Wi-Fi devices) during daytime.

Nevertheless, we see that the slave using our adaptation approach (shown in Figure 19) is able to
cope with this increased RF noise. Over the same period, only 0.62% of all packets and a maximum
of 1.22% packets within a 15-minute period are delayed when using our approach.
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Fig. 18. Percentage of packets exceeding tmax across 48 hours in a student laboratory when using a fixed
connection interval and a Qualcomm CSR8510 A10 radio as BLE master.

Fig. 19. Percentage of delayed packets (top) and adapted connection interval conn_int (bottom) over 48 hours
in a student lab when using our adaptive approach and a Qualcomm CSR8510 A10 as BLE master. Please note
the more granular y-axis of the top plot in this figure compared to Figure 18.

Fig. 20. Percentage of packets exceeding tmax across 48 hours in a student laboratory when using a fixed
connection interval and a Panasonic PAN1762 radio as BLE master.

Fig. 21. Percentage of delayed packets (top) and adapted connection interval conn_int (bottom) over 48 hours
in a student lab when using our adaptive approach and a Panasonic PAN1762 as BLE master. Please note the
more granular y-axis of the top plot in this figure compared to Figure 20.

Panasonic PAN1762 radio. We repeat the experiment using two Panasonic PAN1762 radios as
BLE masters. Figure 20 shows the percentage of delayed packets of Sf ixed over two days, where the
student lab was extensively used during daytime. Overall, 8.09% of all packets exceed tmax with a
maximum of 46.67% of delayed transmissions in a 15-minute period. This high rate of transmission
delays is caused by (i) an increased student activity during the test period and (ii) the fact that the
Panasonic PAN1762 did not adapt the BLE channel map to changes in RF noise during this test.
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Fig. 22. Transmissions latency (tlatency ), their corresponding nCE estimations, and the adapted connection
interval (conn_int ) during a heavy and sudden change in RF noise using a Broadcom BCM43439 master.

Nonetheless, Figure 21 shows that, when using our adaptive approach, only 0.65% of the total
data transmissions and at most 1.77% of the packets sent during 15 minutes are classified as delayed.

Overall, our experiments show that our adaptation approach significantly improves the time-
liness of BLE connections independently of the used BLE platform and the type of co-located RF
noise.

8.3 Dynamic Behavior
To investigate the dynamic behavior of our adaptation approach, we use the long-term measure-
ments from Section 8.2.2 and evaluate how long it takes to (i) detect RF noise changes using
HCI-based nCE estimation and (ii) to adapt the connection interval to these changes in the RF
environment.

Figure 22(a) shows an exemplary time period, during which the RF noise suddenly changes
due to a co-located Wi-Fi device transmitting data. This leads to multiple long packet transmis-
sion delays (marked as red bars) at time 22:40:23. Figure 22(b) shows this specific time period in
more detail and highlights two phases of our nCE estimation and parameter adaptation approach:
(i) the time necessary to detect that the link quality has changed (tdetect ) and (ii) the time needed
to adapt the connection interval of the BLE connection to this change (tadapt ).
tdetect measures the time difference between the instant of time in which a data transmission

is issued and the instant in which the corresponding BLE connection update request is sent by
the slave. We see in Figure 22(b) that the nCE value increases in steps over time until reaching the
actual nCE value of 10. This behavior can be explained by the implementation of our nCE estima-
tion (see Section 5) and parameter adaptation (see Section 7), where before every new data packet
transmission, our application reads the most recentnCE value from our HCI-based nCE estimator.
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Table 5. Measured Timing Values for tdetect and tadapt during the Long-term Tests from Section 8.2.2

Broadcom BCM43439 Qualcomm CSR8510 A10 Panasonic PAN1762
Timings AVG 90% MAX AVG 90% MAX AVG 90% MAX
tdetect [ms] 1,007.9 986.0 4,977.0 1,184.8 987.0 4,987.0 1,116.5 986.0 4,979.0
tadapt [ms] 2,092.4 2,853.0 6,208.0 1,927.1 2,107.4 5,117.0 3,469.2 4,948.0 5,226.0

The table shows the average (AVG), 90 percentile (90%), and maximum (MAX) measured timing value in milliseconds for
the three different BLE radio platforms used over 48 hours.

At time 22:40:24, the application adds the next data packet to the transmission buffer, detects that
the previous packet experienced an nCE of at least 3, and, therefore, issues a BLE connection pa-
rameter update request to adapt the connection interval. This step is repeated two additional times,
until the initial delayed packet (issued at approximately 22:40:23) is successfully transmitted and
its actual nCE value becomes available. Note that every subsequent BLE connection parameter up-
date request overrides the previous ones. In the example in Figure 22(a), the detection phase takes
tdetect = 2,983ms .
tadapt measures the time between issuing the latest BLE connection update request and the new

BLE parameters actually being used. As described in Section 7.2, the BLE specification requires a
delay of at least six connection events between the slave receiving the new connection interval and
the latter being used. In this example, adapting the connection parameters takes tadapt = 5,758ms .
The reason for this long adaptation time is that the slave can only request new parameters, but the
master may ignore this request. Therefore, the application repeatedly requests new parameters
until the master approves, which may lead to tadapt greater than six times the connection interval.

After successfully handling the initial burst of RF noise, the subsequent data transmissions ex-
perience an nCE of at most 5. Therefore, a new BLE connection parameter request is issued at
22:41:30 (approximately L fragments after the initial burst) and the connection interval is updated
accordingly, as shown in Figure 22(c). In this case, the filtering of our adaptation approach imme-
diately detects the change in link quality (tdetect = 0) and the adaptation takes tadapt = 329ms .
This makes adapting to a slower connection interval much faster, as during this adaptation a fast
connection interval is used and, therefore, the mandatory delay of at least six connection events
is shorter.

Table 5 summarizes the timing values of tdetect and tadapt measured in the experiments per-
formed in Section 8.2.2. As the data show, detecting a change in the RF environment takes on
average between 1,007.9 and 1,184.8 ms, with a maximum duration of about 4,987.0 ms. The sub-
sequent parameter adaptation is performed within 1,927.1 and 3,469.2 ms on average and takes at
most 6,208.0 ms.

During our 48-hour test, at most four subsequent data transmissions were delayed when using
the Broadcom BCM43439 or the Qualcomm CSR8510 A10 as BLE master radios. When using the
Panasonic PAN1762, a maximum of 13 subsequent data transmissions were delayed.

9 RELATED WORK
Several studies have investigated the performance of low-power wireless technologies under in-
terference [2, 20]. While these works mostly focus on IEEE 802.15.4, only a few studies investigate
the performance of BLE under interference or the latency of its communications.
BLE performance under interference. Most of the works studying the performance of BLE in
the presence of interference carry out analytic investigations. Existing works focus either on the
performance of device discovery [11, 34, 36] or of BLE connections [9, 13, 25, 31]. Only few works
actually measure the performance of BLE under interference experimentally [17, 30, 35]. These
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studies, however, lack practicality, as they are performed in a small anechoic chamber [30] or
artificially constrain the performance of BLE’s AFH by disabling channel blacklisting [17, 35].

In this article, to the best of our knowledge, we provide the first comprehensive study investi-
gating the performance of BLE connections under different interference patterns. We carry out not
only experiments in common office environments, but also a systematic evaluation in testbeds.
Modeling BLE latency. In this article, we also develop the first model capturing the timeliness
of connection-based BLE communications in noisy environments that can be used on BLE host de-
vices. Existing works, indeed, model the latency of BLE connections using information that is not
available to the application, such as bit error rate, number of CRC errors, or data transmission
probability [9, 13, 25]. Differently from these works, we only embed in our model quantities that
a standard host device is able to measure. Other timeliness models either focus on device discov-
ery [11, 36] or assume perfect channel conditions [7, 31].
Estimating BLE link quality. A few works have investigated how to estimate the link quality
of BLE connections. Lee et al. [15] use round-trip time measurements of periodic L2CAP ping
messages on Linux-based devices to capture the link quality of a BLE connection and dynamically
change the routing topology of RPL over BLE. The authors estimate the connections’ link quality
every 10 seconds, which they show to be a suitable period to detect changes in the routing topology
(i.e., selecting a new parent) and conclude that BLE is reliable due to its AFH mechanism (even
under Wi-Fi interference). Lee et al. [14] investigate the energy consumption and the stability of
a BLE connection in environments with variable link quality (e.g., due to the presence or absence
of line-of-sight caused by doors opening and closing). The authors measure the round-trip time
of frequent L2CAP ping messages and adapt the connection interval to keep the connection alive
(not triggering the BLE supervision timeout) while minimizing energy consumption.

Differently from these works, we estimate the link quality of a BLE connection without introduc-
ing any additional communication overhead. We further use our link quality estimation scheme to
dynamically adapt the connection parameters of a BLE connection and provide an upper latency
bound on individual data packet transmissions.

10 CONCLUSIONS AND FUTURE WORK
In this work, we experimentally study the latency of BLE communications in the presence of ra-
dio interference and show that BLE applications may incur long and unpredictable transmission
delays. To mitigate this problem, we devise a model capturing the timeliness of connection-based
BLE communications in noisy RF environments that can be used on any BLE host device. We do
so by expressing the impact of interference in terms of the number of connection events necessary
to successfully transmit individual data fragments (nCE ), a quantity that can be measured—among
others—by using the timing information of commands sent over the HCI interface between host
processor and BLE controller. This allows any BLE application to adapt its connection parame-
ters at runtime without additional communication overhead, and to increase its timeliness also in
noisy environments. Hence, our work paves the way towards the use of Bluetooth Low Energy for
real-time IoT applications.

Future work includes the improvement of the performance of BLE’s adaptive frequency hopping
mechanism and its channel blacklisting under interference. This, however, requires control over
the inner-workings of the BLE controller.
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ABSTRACT
With the release of Bluetooth Low Energy (BLE) version 5, the Blue-
tooth Special Interest Group introduced three additional physical
(PHY) modes for BLE communication. These PHY modes enable an
application to either double its throughput, or significantly improve
its reliability, making BLE applicable to an even wider range of ap-
plication domains. Unfortunately, no experimental study has yet
investigated the actual performance of BLE 5’s PHY modes in BLE
connections or shown their trade-offs between energy efficiency,
reliability, and throughput. Thus, how to use BLE 5’s PHY modes to
achieve specific application requirements is still an open question.

To fill this gap, we experimentally study the performance of
all four BLE 5 PHY modes in BLE connections and observe that
it is, indeed, possible to double BLE’s throughput or to increase
BLE’s reliability by using the new PHY modes. Furthermore, we
provide guidelines using our measurements on how to select the
most suitable PHY mode based on specific application requirements.
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1 INTRODUCTION
Bluetooth Low Energy (BLE) has become a pervasive wireless tech-
nology to connect constrained and low-power devices to the Inter-
net of Things (IoT). BLE does not only provide an energy-efficent
and reliable way of communication; its wide adoption in almost all
consumer electronic devices, like smartphones and tablets, makes
it the technology of choice for a wide range of application domains,
such as smart health [6], smart cities [2], and smart homes [14].

In order to support an even wider range of applications, the Blue-
tooth Special Interest Group released version 5 of the Bluetooth
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specification, so called BLE 5, in June 2016 [4]. Besides a longer
advertising packet length and increased coexistence capabilities,
BLE 5 introduces three new physical (PHY) modes. One of these,
the 2M PHY, promises to double BLE’s throughput. The other two
modes, the Coded S2 PHY and the Codes S8 PHY, promise to in-
crease BLE’s communication reliability [3].

Although BLE 5 devices have been available since 2017 [9] and
even BLE version 5.1 (enabling a more advanced localization using
multiple antennas) has been released in 2019, no experimental
study has, to the best of our knowledge, investigated if the new
PHY modes of BLE 5 actually perform as advertised when used in
BLE connections. Furthermore, how to use the different PHY modes
to sustain specific application requirements, such as a certain power
consumption, communication reliability, or throughput, has not
been studied in detail and still remains an open question.
Contributions. In this paper, we fill this gap and experimentally
study the performance of BLE 5 and its new PHY modes. Our inves-
tigation allows to understand: (i) whether the BLE 5 PHYs deliver
on their promises, and (ii) how to select the best PHY for a given
application. To this end, we perform the first comprehensive experi-
mental study of all four BLE 5 PHY modes used in a BLE connection
and answer the following questions:

• Does the 2M PHY really allow to double the throughput?
• Do the Coded S2 PHY and the Coded S8 PHY really increase

the relibility of a BLE connection?
• How does the chosen PHY mode affect the overall power

consumption of a BLE device?
Based on these measurements, we show the trade-off between

energy efficiency, reliability, and throughput for each PHY mode
and provide guidelines on how to select the most suitable PHY
for a given application. For this purpose, we derive the effective
throughput and effective power consumption of all four PHY modes
for BLE connections with different link quality and investigate:

• Which PHY provides the maximum effective throughput?
• Which PHY minimizes the effective power consumption?

The remainder of this paper is structured as follows: Sect. 2 pro-
vides the necessary technical background on the four PHY modes of
BLE 5 and connection-based BLE. Sect. 3 describes our experimental
setup and evaluates the (i) power consumption, (ii) data throughput,
(iii) packet reception rate, and (iv) robustness to Wi-Fi interference
of a BLE 5 connection using the four PHY modes. Sect. 4 provides
guidelines on choosing the best PHY mode for specific application
requirements. Sect. 5 lists related work and Sect. 6 summarizes our
findings and discusses future work.

2 BLE 5 PRIMER
In this section, we provide the necessary technical details on the
different PHY modes of BLE 5 (Sect. 2.1) and discuss how they are
used in BLE connections for bi-directional data exchange (Sect. 2.2).
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Preamble
(1 or 2 bytes)

Access Address
(4 bytes)

PDU
(2 to 257 bytes)

CRC
(3 bytes)

(a) BLE link layer packet format for the 1M and 2M PHY mode.

Preamble
(10 bytes)

Access Address
(4 bytes)

PDU
(2 to 257 bytes)

CRC
(3 bytes)

CI
(2 bytes)

TERM1
(3 bytes)

TERM2
(3 bytes)

FEC block 1 FEC block 2

(b) BLE link layer packet format for the Coded S2 and S8 PHY mode.
Figure 1: Overview of the BLE link layer packet structure.

2.1 BLE 5 PHY Modes
With the publication of the BLE 5 specification [4] in June 2016,
three additional physical (PHY) modes, the 2M, the Coded S2, and
the Coded S8 PHY mode, were introduced. While the 2M PHY,
where the M stands for Megasymbols/s (Msym/s), promises twice
the data rate compared to the existing 1M PHY mode, the two
Coded PHY modes are meant to increase the communication re-
liability of BLE devices [3]. Hence, the four PHY modes provide
application developers with additional possibilities to fine-tune
BLE’s performance to individual application requirements, such as
energy-efficiency, throughput, and reliability.

To achieve these different characteristics, the PHY modes use dif-
ferent error correction/detection, modulation, and coding schemes.
Besides, all PHYs use Gaussian Frequency Shift Keying on the 40
BLE radio channels located in the 2.4 GHz ISM band.
2.1.1 1M PHY. This is the original mode of BLE and was the sole
mode for all BLE communication with a version number below 5.
Therefore, this is the only backwards-compatible mode that can
be used with BLE devices not supporting BLE 5. In this mode, the
modulation scheme supports a physical modulation of 1 Msym/s,
meaning that transmitting a single bit of payload takes 1 µs. All
packet data is not coded and, therefore, has no error correction.

Fig. 1a shows the link-layer packet format of the 1M PHY mode.
The preamble is 1-byte long and is followed by 4 bytes containing
the access address. After the Protocol Data Unit (PDU), which has
a variable length between 2 and 257 bytes, the packet ends with a
3-byte CRC checksum, which is used to check for packet corruption.
2.1.2 2M PHY. In case an application needs to sustain a high
throughput, it may use the 2M PHY mode of BLE. In contrast to
the other three PHYs, this mode uses a physical modulation of
2 Msym/s, resulting in 0.5 µs of air time for a single payload bit.
Similar to the 1M PHY, data sent with the 2M PHY is not coded and
has no error correction. The 2M PHY link-layer packet format is
similar to the format of the 1M PHY shown in Fig. 1a, however a 2-
byte preamble is used. Hence, the new 2M PHY promises twice the
throughput at the cost of a lower reliability for poor link qualities.
2.1.3 Coded S2 PHY. When a more reliable communication is
needed (e.g., due to a long communication distance or the presence
of co-located radio interference), the Coded S2 PHY mode may be
used. This mode uses a physical modulation of 1 Msym/s, but makes
use of forward error correction (FEC) with a symbol coding of 2 (S2),
leading to an increased robustness. A single data bit encoded with
S2 coding takes 2 µs on the air, resulting in a data rate of 500 kb/s.

The link layer packet format of this mode is shown in Fig. 1b. As
this figure shows, the packet is split into three parts: a preamble, a
FEC block 1, and a FEC block 2. The preamble is 80 µs long and is
sent without coding. The FEC block 1 contains the access address as
well as the coding indicator (CI) and ends with the first termination

Master

Slave

conn_int

Event N0

Channel k0

Event N1

Channel k1

Event N2

Channel k2

tCE

t

t

Advertising

Scanning

Connection setup
Adv. Channels (37, 38, 39)

Figure 2: BLE connection between a slave and a master.

field (TERM1). The FEC block 2 contains the PDU and a 3-byte CRC
checksum and is terminated by a second termination field (TERM2).
According to the BLE specification [4], even when a packet is sent
with the Coded S2 PHY, the FEC block 1 always uses S8 Coding.
Compared to the 1M PHY, this PHY improves BLE’s reliability, at
the cost of less throughput and an increased power consumption.
2.1.4 Coded S8 PHY. The Coded S8 PHY uses an even more robust
coding and error correction scheme than the Coded S2 PHY. This
PHY also transmits with a physical modulation of 1 Msym/s, but
uses an FEC with a symbol coding of 8 (S8) for the whole packet.
Using the Coded S8 PHY, a single data bit takes 8 µs on the air.
Fig. 1b shows the link-layer packet format of the Coded S8 PHY
mode. Using the Coded S8 PHY, all packet fields are sent with a
coding of 8, resulting in a data rate of 125 kb/s for the whole packet.
The Coded S8 PHY promises to improve BLE’s reliability for poor
link qualities even further, at the cost of a lower throughput and
increased power consumption compared to the other PHYs.

2.2 BLE Connections
BLE supports two modes of communication: a connection-less and
a connection-based mode. In the connection-less mode, a device
is either broadcasting short data packets on the three BLE adver-
tisement channels (37, 38, and 39) or scanning for such broadcast
messages. However, if two devices need to bidirectionally exchange
data packets, they need to use connection-less primitives to estab-
lish a BLE connection. In the connection-based mode, one device
acts as a master and the other as a slave; communication takes place
during connection events (N0 ... Ni ), as shown in Fig. 2.

The time between the start of two consecutive connection events
is defined by the connection interval (conn_int ). Every connection
event starts with a link-layer packet from the master, to which the
slave responds. In case master and slave have no additional data to
send, the connection event ends after this mandatory exchange of
keep-alive messages. If, however, more data needs to be transmitted,
master and slave keep exchanging link-layer packets until all data
is successfully sent or the maximum connection event length (tCE )
is reached. The last link-layer packet during a connection event
is always sent by the slave, after which both devices disable their
radio and resume communication at the next connection event.

Fig. 2 shows an example where, after the connection setup using
connection-less primitives, the master starts connection event N0
by sending a short keep-alive packet to the slave. The slave has
data to send and therefore responds with a link-layer packet (which
is longer than the keep-alive packet from the master) carrying the
data. During connection event N1, both devices have no data to
transmit and therefore only exchange the mandatory keep-alive
packets. In connection event N2, however, the master has data to
send and therefore starts the connection event by sending a link-
layer packet carrying data. Because the master has additional data
to send, it waits for the slave’s response before sending a second
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Figure 3: Average power consumption (PAV G ) of a BLE slave
for different connection intervals and PHY modes when us-
ing a fixed PDU length of 253 bytes.

link-layer packet containing the rest of the data. The slave responds
with a second link-layer packet, ending the connection event.

In the connection-based BLE mode, the link layer autonomously
handles packet acknowledgment (ACK) and flow control using a
1-bit ACK field and a 1-bit sequence number in every link-layer
packet header. If a link-layer packet was not successfully sent, it
is automatically retransmitted. To further ensure reliable commu-
nication, BLE connections use adaptive frequency hopping (AFH).
Using AFH, one of the enabled data channels in the data channel
map is selected at the start of every connection event and is used
by master and slave to exchange all packets during the event.

3 MEASURING THE PERFORMANCE OF BLE 5
To evaluate the performance of the four different PHY modes of
BLE 5, we perform an experimental study (Sect. 3.1) and measure the
power consumption (Sect. 3.2), the maximum achievable through-
put (Sect. 3.3), the link-layer packet reception rate (Sect. 3.4), and the
robustness under Wi-Fi interference (Sect. 3.5) of a BLE connection.

3.1 Experimental Setup
We perform our experiments on a testbed located in a vacant Uni-
versity lab (6x10 meters). The measurements were taken on a BLE
connection between a BLE master and slave for all four PHY modes.

BLE master and slave have direct line of sight and use a trans-
mission power of 0 dBm in all of our experiments.
BLE master. We use an nRF52840 DK device from Nordic Semi-
conductor [10] as a BLE master for all of our measurements. The
master scans for a BLE slave and initiates a BLE connection. After
the connection has been established, the master subscribes to a
custom Generic Attribute Profile (GATT) attribute on the slave.
BLE slave. We use another nRF52840 DK device as a BLE slave that
advertises its presence and waits for a BLE connection to be initiated
by the BLE master. Once the master has successfully subscribed
to the custom GATT attribute, the slave periodically notifies the
master with a GATT notification. In our experiments, we are able
to vary the length of the GATT notification in bytes and the time
between two consecutive notifications.
Controlling the BLE PHY mode. Both master and slave run
the Zephyr operating system [19]. Zephyr provides a standard-
compliant BLE stack allowing access to the inner workings of the
BLE link layer. This way, we have fine-grained control over the
connection settings and the PHY mode of the BLE connection.

3.2 Power Consumption
To evaluate the impact of the different PHY modes on the power
consumption of a system, we use the experimental setup described

Figure 4: Average power consumption (PAV G ) of a BLE slave
for different PDU lengths and PHY modes when using a
fixed connection interval of 125 ms.

in Sect. 3.1 and measure the power consumption of a BLE slave in
different configurations. We focus on the power consumption of the
slave, as it usually operates on a constrained energy budget, such as
a coin cell battery, while the BLE master usually has a continuous
power supply. The power consumption of a master sustaining a
single BLE connection is comparable to the slave’s consumption,
but increases with every connection that needs to be maintained.

Once the master has established a BLE connection and has sub-
scribed to the custom GATT attribute, the slave periodically sends
a notification of configurable length to the master every 1000 ms. In
this set of experiments, master and slave have a distance of approx-
imately 1 meter and direct line of sight. We disable all debugging
and application logging features on the slave and use the Monsoon
Power Monitor [8] to measure the system’s power consumption.
We vary the used PHY mode, connection interval, and PDU length
and measure the average power consumption (PAV G ) of the slave
for every settings over 120 seconds. We repeat the measurements
for each configuration five times to ensure statistical significance.

Fig. 3 shows PAV G for different PHY modes and connection in-
tervals when using a fixed PDU length of 253 bytes. First, we can
clearly observe that PAV G increases when using a lower connec-
tion interval, as the BLE radio is more active (see Sect. 2.2). This
matches our expectations as well as the models and measurements
shown in [17]. Second, we can see a significant difference in power
consumption when different PHY modes are used. As expected, the
2M PHY mode results in the lowest PAV G , as it has the lowest radio
duty cycle due to its fast data rate. The Coded S8 PHY, however,
leads to the highest power consumption, because of its higher radio
duty cycle caused by the overhead of the employed coding scheme.
Compared to the legacy 1M PHY, the 2M PHY consumes approx-
imately 8% less power in our experiments. The Coded S2 and S8
PHY consume approximately 61% and 70% more power compared
to the 1M PHY for all four connection intervals, respectively.

Fig. 4 shows PAV G of the slave for different PHY modes and
PDU lengths when using a fixed connection interval of 125 ms. The
values labeled Baseline shows PAV G when the BLE connection is
alive, no data is transmitted by the application, therefore showing
the power consumed for maintaining the BLE connection (i.e., to
exchange only keep-alive packets). Similar to the data shown in
Fig. 3, the 2M PHY mode is the most energy efficient, while the
Coded S8 PHY mode results in the highest power consumption.

Comparing Fig. 3 and Fig. 4 we see that the used connection
interval has a high impact on PAV G . For example, a BLE slave using
the 2M PHY mode consumes approximately 85% more power when
using a connection interval of 62.5 ms instead of 500 ms. Using the
Coded S8 PHY, a slave consumes even 155% more power when using
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Figure 5: Link-layer throughput (TLL) for different PHY
modes and connection intervals measured at the master.
Note that the standard deviation is at most ±0.4% in our tests and,
therefore, not clearly visible in the figure.

a connection interval of 62.5 ms instead of 500 ms. The used PDU
length, however, only slightly increases the power consumption,
leading to 20% more consumption when sending a PDU length of
253 bytes instead of 32 bytes for the Coded S8 PHY mode. We also
see that the power used for maintaining the BLE connection (shown
as Baseline in Fig. 4) accounts for a significant portion, between
72% and 91%, of the overall power consumption of the system.

3.3 Throughput
Next, we measure the maximum achievable throughtput of the
different PHY modes of BLE 5. We use the experimental setup dis-
cussed in Sect. 3.1 and keep BLE master and slave at an approximate
distance of 1 meter with direct line of sight. Similar to Sect. 3.2,
the master initiates a BLE connection and subscribes to the custom
GATT attribute on the slave. However, for these measurements the
slave sends a new notification every 5 ms with a PDU length of
253 bytes, filling the outgoing transmission buffer of the slave.

The master application measures the time it takes to receive
10000 subsequent GATT notifications from the slave and uses the
measured time to calculate the link-layer throughput (TLL) of the
BLE connection. Every throughput measurement consists of 10 test
runs, where each run consists of 10 throughput measurements (over
10000 GATT notifications) per PHY mode and connection interval.

To achieve the maximum possible throughput, we configure the
BLE devices to use the maximum number of link-layer transmis-
sion and reception buffers (18 and 19, respectively) and increase
the L2CAP buffer and fragment count to 50. This maximizes the
connection event length tCE of the BLE connection (see Sect. 2.2)
and hence the number of packets sent during a connection event.

Fig. 5 shows the TLL for different PHY modes and connection
intervals measured at the master. As expected, the 2M PHY, having
a physical modulation of 2 Msym/s, provides the highest through-
put of all PHYs, while the Coded S8 PHY has the lowest TLL in our
experiments. According to our measurements, the 2M PHY provides
between 178% and 212% of the 1M PHY mode’s throughput, there-
fore keeping its promise of doubling its throughput [3]. Contrary
to our expectations in Sect. 2.1, the Coded S8 PHY mode provides
almost 50% of the throughput of the 1M PHY mode. This, however,
can be explained by the behavior of the BLE stack of Zephyr [19] on
the nRF52840 platform. Whenever the transmission buffers of the
BLE link layer get filled, the logic in the link layer implementation
always uses the Coded S2 PHY, even if the Coded S8 PHY was
chosen by the developer. Therefore, although we configure master
and slave to use the Coded S8 PHY, they autonomously switch to
the Coded S2 PHY mode when the BLE buffers are filled.

Figure 6: Link-layer packet reception rate (PRR) of the BLE
connection for different PHY modes and attenuation values.

Another observation from Fig. 5 is that the used connection
interval has no significant impact onTLL in our experiment, because
we configure the BLE buffers on master and slave so that multiple
notification packets can be transmitted in a single connection event.

3.4 Packet Reception Rate
To estimate the differences in communication reliability of the PHY
modes of BLE 5, we measure the link-layer packet reception rate
(PRR) for different link qualities. We use the experimental setup
described in Sect. 3.1, but change the distance between the master
and slave to approximately 10 meters with direct line of sight. In
order to accurately and repeatably measure the PRR for different
link qualities, we connect a programmable attenuation device [7]
and an external 2.4 GHz antenna to the antenna connector of the
slave. This programmable attenuator allows us to have fine-grained
control over the antenna attenuation on the slave, which we use to
lower the link quality of the BLE connection in 5 dBm steps.

The master initiates a BLE connection with a connection interval
of 25 ms and subscribes to the custom GATT attribute of the slave,
similar to the experiments described above. The BLE slave tries to
send a notification with a PDU length of 253 bytes every 25 ms. If a
notification is pending (i.e., it has not been successfully sent yet),
no new notification is added by the slave, leading to a maximum of
one notification sent per connection event.

We insert log ouputs into the link layer implementation of the
BLE master to accurately measure the link-layer PRR of the BLE
connection. The master’s link layer logs the number of link-layer
transmissions and retransmissions, which we use to calculate the
PRR. We also limit the data channel map of the BLE connection to
the BLE channels 12 to 19, as these channels are not interfered by
any co-located radio technology; this minimizes the effects of RF
noise on our measurements. We measure the PRR for every PHY
and attenuation setting over more than 3000 connection events per
setting and repeat each test 10 times.

Fig. 6 shows the PRR of the four PHY modes of BLE 5 for different
attenuation values. The x-axis of Fig. 6 shows the effective attenua-
tion of the antenna of the slave (the +3 dBm of the external 2.4 GHz
antenna minus the configured attenuation on the programmable
attenuator). As expected, the 2M PHY mode has the lowest PRR out
of the four available PHY modes. For example, while the Coded S2
and S8 PHYs provide a PRR of 67% and 80% for an attenuation of
-15 dBm, the 2M PHY is only able to sustain a 15% PRR. The 1M PHY
is able to sustain a PRR of 32% for an attenuation of -15 dBm. Hence,
the Coded S2 PHY and the Coded S8 PHY increase the link-layer
PRR of BLE connections for poor link qualities, and therefore BLE’s
reliability, due to their employed coding schemes.
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Figure 7: Link-layer packet reception rate (PRR) for different
PHY modes and interfering Wi-Fi transmission power. Note
the non-linear x-axis scale showing the Wi-Fi transmission power.

3.5 Robustness to Interference
We finally experimentally evaluate the robustness under Wi-Fi in-
terference of the four PHY modes of BLE 5. To this end, we measure
the link-layer packet reception rate (PRR) of a BLE connection in
the presence of co-located Wi-Fi interference. We make use of the
experimental setup from Sect. 3.1 and introduce a Raspberry Pi 3
(RPi3) [12], which we use to generate repeatable Wi-Fi interference.
For this experiment, we place the BLE master and slave at a distance
of approximately 3 meters with direct line of sight. The RPi3 used
for Wi-Fi jamming is placed at a distance of 1 meter to the slave
and 4 meters to the master. To create Wi-Fi interference, we use
JamLab-NG [15] and let the RPi3 generate IEEE 802.11b packets on
Wi-Fi channel 6 using its on-board Broadcom bcm43438 radio. We
let the RPi3 send a 1500-byte long packet every 10 milliseconds.

Similar to the previous experiments, the master initiates a BLE
connection with the slave and subscribes to the slave’s custom
GATT attribute. The BLE connection is configured to use a connec-
tion interval of 125 ms and uses only the BLE data channels 12 to
19 that all overlap with the Wi-Fi channel 6 where interference in
generated. The slave sends a GATT notification with a PDU length
of 253 bytes in the same way as described in Sect. 3.4. We use the
log output of the master’s link layer and count the link-layer trans-
missions and retransmissions, which we use to calculate the PRR of
the BLE connection. We measure the PRR for 5 minutes (resulting
in over 2400 values per test) for every PHY and Wi-Fi transmission
power and repeat the experiment 10 times for each setting.

Fig. 7 shows the average PRR of the BLE connection for different
PHY modes and Wi-Fi transmission power settings. Our measure-
ments show that, as expected, the Coded S8 PHY mode provides
the highest PRR and thus the highest reliability under interference.
The data also show that the Coded S2 and S8 PHY increase the link
budget by 5dBm under Wi-Fi interference. While the Coded S2 and
S8 PHYs are able to sustain almost 100% PRR, the 2M PHY only
provides a PRR of 54% for a Wi-Fi transmission power of 5mW.

4 CHOOSING THE MOST SUITABLE PHY
The measurements in Sect. 3 show that the used BLE 5 PHY mode
significantly influences the energy efficiency, throughput, and re-
liability of a BLE connection. Based on our measurements, we in-
vestigate how to maximize the effective throughput (Sect. 4.1) and
minimize the effective power consumption (Sect. 4.2) by selecting
the most suitable PHY mode (Sect. 4.3).

4.1 Maximizing Throughput
In this section, we answer the question: Which PHY mode of BLE 5
provides the maximum effective data throughput? To this end, we

Figure 8: Effective link-layer throughput (TEF F ) as a func-
tion of the PHY mode and the attenuation of the BLE slave
antenna when using a connection interval of 125 ms.

calculate the effective link-layer throughput of the four PHY modes
of BLE 5 for different link qualities of the used BLE connection.

We define the effective link-layer throughput (TEF F ) as the num-
ber of link-layer bytes per second that are successfully sent over a
BLE connection and calculate TEF F as

TEF F = PRR ·TLL, (1)
where PRR is the measured link-layer packet reception rate for
a given PHY mode and antenna attenuation (shown in Sect. 3.4),
whereasTLL is the maximum achievable link-layer throughput of a
given PHY mode and connection interval (shown in Sect. 3.3).

Fig. 8 shows TEF F for different BLE antenna attenuations when
using a connection interval of 125 ms. The data suggest that the
best PHY mode to sustain a maximum effective throughput depends
on the link quality of the BLE connection (indicated by the BLE
antenna attenuation). In case only a few link-layer data packets are
corrupted and thus need to be retransmitted, the 2M PHY mode
provides the highest TEF F . If packets are frequently corrupted,
because of a poor link quality of the underlying BLE connection,
the Coded S8 PHY is able to recover most corrupted packets and
hence achieves the highest effective throughput. Using the 1M or
the Coded S2 PHY mode always leads to a suboptimal TEF F .

Results for connection intervals of 62.5 ms, 250 ms, and 500 ms
show similar behavior, but are omitted due to space constraints.

4.2 Minimizing Power Consumption
In this section, we answer the question: Which PHY mode of BLE 5
minimizes the effective power consumption? To this end, we calculate
the effective power consumption of a slave using the four PHY
modes of BLE 5 for different link qualities of the BLE connection.

We define the effective power consumption (PEF F ) as the overall
power consumption of a slave periodically transmitting application
data, accounting for the additional power consumption introduced
by packet retransmissions. PEF F is calculated as

PEF F = PM +
PDAT A
PRR

, (2)
where PM is the overall power consumption of a slave for main-
taining the BLE connection, i.e., to only exchange the mandatory
keep-alive packets. The PM value for a given connection inverval
and PHY mode is shown in Fig. 4 labeled as Baseline. PRR is the
link-layer packet reception rate for a given PHY mode and antenna
attenuation (shown in Sect. 3.4). Finally, PDAT A is the power con-
sumed for transmitting the actual application data over the BLE
connection. By measuring the average power consumption while
transmitting data (PAV G ) and the power consumed for maintaining
the BLE connection (PM ), PDAT A can be calculated as

PDAT A = PAV G − PM . (3)
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(a) Effective power consumption (PEF F ) over the whole range.

(b) Effective power consumption (PEF F ) in the relevant range.
Figure 9: Effective power consumption (PEF F ) as a function
of the used PHY and antenna attenuation of a BLE slave us-
ing a connection interval of 125 ms. Note that (a) shows PEF F
over its whole range, while (b) shows the range relevant for analysis.

Fig. 9 shows the effective power consumption (PEF F ) of a BLE
slave when using a connection interval of 125 ms and a PDU length
of 253 bytes. Similar to the analysis in Sect. 3.3, the data in Fig. 9
suggest that the most energy efficient PHY mode mainly depends on
the link quality of the BLE connection. In case only a few link-layer
packets are corrupted and therefore retransmitted, due to a good
link quality, the 2M PHY mode provides the most energy-efficient
communication. When packets are frequently corrupted, the Coded
S8 PHY leads to a lower power consumption, as most corrupted
packets can be recovered and do not need to be retransmitted. In
contrast to Sect. 3.3, we can see that during a small transition area
(an attenuation between -10 dBm and -15 dBm) the 1M PHY mode
slightly outperforms the other PHYs in our experiments.

Similar results for PEF F can be observed for a connection interval
of 250 ms and 500 ms, but are omitted due to space constraints.

4.3 PHY Mode Selection
The previous sections suggest that choosing the most suitable PHY
mode to achieve a maximum throughput or a minimum power con-
sumption requires information about the link quality or the number
of link-layer retransmissions of the underlying BLE connection. Un-
fortunately, off-the-shelf BLE devices do not provide developers
with this information per default. However, a developer may use
the approach presented by Spörk et al. [18] to statically measure
the link quality of a BLE connection during device deployment and
manually select the most suitable PHY mode for an application.

Furthermore, an application may use the approach in [18] to
dynamically measure the link quality and adapt the used PHY mode
at runtime. To this end, a device can use the standardized L2CAP
PHY Update Procedure of BLE 5 to change the used PHY mode [4].

5 RELATED WORK
Several studies have experimentally investigated the key perfor-
mance metrics of BLE. While most of these studies have focused
on connection-less BLE [14], a few evaluated the connection-based
mode [16, 17]. The latter compare the performance of BLE to
IEEE 802.15.4 and conclude that BLE is, indeed, more energy effi-
cient at the cost of a shorter communication range. However, these
works used BLE v4.0 [16] and v4.1 [17] for their measurements.

A few works [1, 5, 11, 13] investigate BLE 5 and its different PHY
modes. Ray and Agarwal [13] describe the capabilities of BLE 5,
including its PHY modes, but only theoretically discuss BLE 5’s
potential in the IoT. Others experimentally investigate BLE 5’s dif-
ferent PHY modes for connection-less BLE communication [1, 5, 11].
These works conclude that the used PHY has an effect on the power
consumption and throughput when used in BLE advertising.

In this paper, to the best of our knowledge, we provide the first
experimental study that investigates the performance of all four
PHY modes of BLE 5 when using connection-based BLE. Further-
more, we are the first to provide guidelines for selecting the best
PHY mode to achieve specific application requirements.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we provide the first experimental performance analy-
sis of BLE 5’s new PHY modes in BLE connections. We highlight
the trade-offs of each PHY mode and show how the used PHY
mode affects the energy efficiency, communication reliability, and
throughput of a connection-based BLE application. We further pro-
vide guidelines showing how to select the most suitable PHY mode
to sustain specific application requirements, such as a minimum
effective power draw or a maximum effective throughput.

Our results can be used to improve the performance of existing
BLE applications. Furthermore, BLE applications may use our re-
sults and guidelines to dynamically adapt the used PHY at runtime.
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Bluetooth Low Energy Connections. In Proceedings of the 17th International Conference on
Embedded Wireless Systems and Networks (EWSN). Junction Publishing, Feb. 2020

©2020 Copyright is held by the authors.
DOI: 10.5555/3400306.3400324
Link: https://dl.acm.org/doi/abs/10.5555/3400306.3400324

Abstract. To sustain a reliable data exchange, applications based on BLE need to effectively
blacklist channels and adapt the physical mode of an active connection at runtime. Although the
BLE specification foresees the use of these two mechanisms, their implementation is left up to the
radio vendors and has not been studied in detail yet.

This paper fills this gap: we first investigate experimentally how to assess the quality of a BLE
connection at runtime using information gathered from the radio. We then show how this infor-
mation can be used to promptly blacklist poor channels and select a physical mode that sustains a
high link-layer reliability while minimizing power consumption. We implement both mechanisms
on two popular platforms and show experimentally that they allow to significantly improve the
reliability of BLE connections, with a reduction in packet loss by up to 22% compared to existing
solutions.

My contribution. I am the main author of this paper and developed the idea to improve the link-
layer reliability of BLE connections via BLE channel management and BLE PHY mode adapta-
tion. I have designed and implemented the software on the Nordic Semiconductor hardware, as
well as, executed all experiments presented in the paper. Jiska Classen was responsible for im-
plementing our improvement on the Raspberry Pi platform and helped me in deriving the most
suitable BLE channel management approach. I wrote the vast majority of the paper in collabo-
ration and discussion with my co-authors and presented the paper at EWSN’20. This work was
executed in collaboration with TU Darmstadt.

– 157 –

https://dl.acm.org/doi/abs/10.5555/3400306.3400324


Improving the Reliability of Bluetooth Low Energy Connections
Michael Spörk†, Jiska Classen§, Carlo Alberto Boano†, Matthias Hollick§, and Kay Römer†
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Abstract
To sustain a reliable data exchange, applications based on

Bluetooth Low Energy (BLE) need to effectively blacklist
channels and adapt the physical mode of an active connec-
tion at runtime. Although the BLE specification foresees the
use of these two mechanisms, their implementation is left up
to the radio vendors and has not been studied in detail yet.

This paper fills this gap: we first investigate experimen-
tally how to assess the quality of a BLE connection at run-
time using information gathered from the radio. We then
show how this information can be used to promptly blacklist
poor channels and select a physical mode that sustains a high
link-layer reliability while minimizing power consumption.
We implement both mechanisms on two popular platforms
and show experimentally that they allow to significantly im-
prove the reliability of BLE connections, with a reduction in
packet loss by up to 22 % compared to existing solutions.

Categories and Subject Descriptors
B.8 [Performance and Reliability]

General Terms
Design, Measurement, Performance, Reliability.

Keywords
BLE, PHY Mode, Adaptive Frequency Hopping.

1 Introduction
BLE is a low-power wireless technology that is increas-

ingly used to create pervasive Internet of Things (IoT) ap-
plications, e.g., in the smart health [13], smart city [12], and
smart grid [8] domains. Many of these applications are safety
critical and impose strict requirements on communication
performance, especially with respect to the reliability of the
data exchange; that is, BLE systems are expected to sustain a
minimal packet loss and to ensure short transmission delays.

To increase the reliability of the data exchange, one can
make use of information available on the BLE host to adapt
BLE’s connection parameters at runtime [17, 32]. This helps
developers to cope with packet loss at the link layer by min-
imizing its impact on transmission delays. However, it does
not allow to prevent packet loss at the link layer, which is
necessary to maximize the reliability of a BLE connection.
The BLE specification [4] foresees two mechanisms to im-
prove the link-layer reliability of BLE connections: adap-
tive frequency hopping with channel blacklisting and physi-
cal (PHY) mode adaptation. Channel blacklisting allows to
exclude poor-performing channels from being used for data
exchange. PHY mode adaptation allows to trade receiver
sensitivity and error correction capabilities (improving com-
munication range and robustness) for a higher data rate.
The problem. While the primitives for channel blacklist-
ing and PHY mode adaptation are fully embedded in the
BLE specification, how these mechanisms should actually
be used to improve link-layer reliability is not defined and
left to the radio vendors. This results in some BLE platforms
not implementing blacklisting at all (e.g., the Nordic Semi-
conductor nRF52), and other platforms employing blacklist-
ing strategies that were shown to be ineffective in real-world
settings (e.g., the Raspberry Pi 3) [32]. Similarly, the lack of
guidance on how to use the various PHY modes has triggered
several studies investigating their performance [3, 9, 33], but
no concrete solution employing them to improve link-layer
reliability at runtime has been proposed yet. How to effec-
tively blacklist channels and adapt the PHY mode to mini-
mize link-layer packet loss remains an open question.
The challenges. Link-layer transmissions may fail due to
several reasons, such as weak signal strength, multipath fad-
ing, or external radio interference [5, 36]. All these factors
decrease link-layer reliability, which leads to higher power
consumption and transmission delays. To avoid this, one
needs to detect these factors and react accordingly, which
requires insights about the quality of the used BLE channels.

How to measure link quality? Understanding the quality
of the overall BLE connection and individual channels re-
quires to investigate in depth what kind of information can
be gathered by the BLE radio at runtime and how this infor-
mation may be used to blacklist individual channels or adapt
the connection’s PHY mode.

How to effectively blacklist channels? Based on the in-
formation available in the BLE radio, we need to promptly
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detect and blacklist channels with poor quality, while leaving
enough channels available for a reliable communication.

How to determine the most suitable PHY mode? Based
on the information available in the BLE radio, we need to
select the PHY mode that allows to sustain a high link-layer
reliability while minimizing the power consumption.

How to design a general solution? In order to be us-
able by a large fraction of BLE platforms on the market, we
need to design and implement effective blacklisting and PHY
mode adaptation mechanisms such that both techniques can
be used cooperatively on any standard-compliant BLE de-
vice that allows link-layer access.
Contributions. We tackle each of these challenges and ul-
timately improve the link-layer reliability of BLE connec-
tions by designing an effective channel blacklisting and PHY
mode adaptation mechanism for standard-compliant devices.

To this end, we first perform an extensive experimental
campaign to gain a detailed understanding of the informa-
tion provided by different link quality metrics available in the
BLE radio. Such an experimental study fills the gap of ex-
isting research and serves as a reference to guide researchers
and practitioners working on BLE’s link-layer.

Based on this experimental study, we design and evaluate
different channel blacklisting mechanisms and observe that
passively monitoring the Packet Delivery Ratio (PDR) of in-
dividual channels is the most effective way to promptly de-
tect poor channels in order to blacklist them. Our proposed
channel blacklisting mechanism is hardware-independent
and can be used in any standard-compliant BLE device that
allows access to the BLE link layer.

We also design a PHY mode adaptation mechanism that
monitors recent Signal-to-Noise Ratio (SNR) measurements
to dynamically change the used PHY mode when necessary.
The proposed mechanism allows to sustain a specified min-
imum link-layer reliability while limiting power consump-
tion; all of this using standardized BLE primitives, such that
it can be used by any device supporting multiple PHYs.

We implement both mechanisms on two popular hard-
ware platforms: the Nordic Semiconductor nRF52 and the
Raspberry Pi 3 (Pi3). As we only make use of standard-
ized BLE primitives, our approach can be easily ported to
other standard-compliant BLE platforms. Finally, we exper-
imentally show that our mechanisms on the nRF52 coopera-
tively improve link-layer reliability by up to 22 %. Using our
improvements, the nRF52 sustains a link-layer reliability of
over 99 % in all experiments. Our improvements on the Pi31

increase the link-layer reliability of BLE connections by up
to 10 % without incurring additional power consumption.

After providing some background on connection-based
BLE in Sect. 2, this paper makes the following contributions:
• We experimentally study the link quality metrics that

can be gathered by the BLE radio at runtime and discuss
the insights that each metric provides (Sect. 3).
• We design an effective channel blacklisting mechanism

that uses recent PDR measurements to detect and black-
list BLE channels with poor link quality (Sect. 4).

1Our improvements on the Pi3 are openly available at https://
github.com/seemoo-lab/internalblue/tree/master/examples

t
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Connection-less BLE Link-layer keep-alive packets Link-layer data packets

Figure 1. BLE connection between a master and a slave.

• We design an effective PHY mode adaptation mecha-
nism using SNR readings that can sustain a given relia-
bility while minimizing power consumption (Sect. 5).

• We implement the proposed mechanisms on two popu-
lar hardware platforms (Sect. 6) and evaluate their per-
formance in different real-world scenarios (Sect. 7).

After summarizing related work in Sect. 8, we conclude this
paper in Sect. 9 along with a discussion of future work.
2 Background on BLE Connections

BLE provides two communication modes: a connection-
less and a connection-based mode. While the connection-
less mode makes use of three advertisement channels to
broadcast short data packets, the connection-based mode
supports bidirectional data transfer. To enter the connection-
based mode two devices use connection-less primitives to
establish a BLE connection. In this connection, one device
acts as master and the other as slave. Data exchange happens
only during connection events (N0 ... Ni), as shown in Fig. 1.

The connection interval (conn_int) specifies the time be-
tween the start of two consecutive connection events. Dur-
ing a connection event, master and slave exchange link-layer
packets until both devices have no more data to send or the
maximum connection event length (tCE ) is reached. These
link-layer packets either carry application data (orange) or
an empty payload to keep the connection alive (blue). Ev-
ery connection event starts with a transmission by the mas-
ter, to which the slave responds. If no data needs to be sent,
only mandatory keep-alive packets are exchanged. The last
link-layer packet in a connection event is always sent from
slave to master, after which the connection event is closed
and communication is resumed at the next connection event.

In the example shown in Fig. 1, the master starts connec-
tion event N0 by sending a keep-alive packet to the slave, and
the slave responds with a link-layer data packet carrying ap-
plication data. In connection event N1, master and slave have
no data to send and therefore only exchange the mandatory
keep-alive packets. During connection event N2, the master
transmits data to the slave. Because this data exceeds the
maximum length of link-layer data packets, the master splits
the data into two link-layer packets that are both acknowl-
edged by the slave with a link-layer keep-alive packet.
AFH algorithm. At the beginning of every connection
event, one out of 37 data channels is selected by BLE’s adap-
tive frequency hopping (AFH) algorithm.2 A new channel is
chosen for every connection event and is used for all trans-
missions taking place during this event.

2 With the release of BLE 5, BLE devices can use one of two possible
AFH algorithms. As we show in Sect. 7, the employed AFH algorithm does
not have significant impact on the link-layer reliability of a BLE connection.
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Data channel selection. All 37 data channels are located
in the license-free 2.4 GHz Industrial, Scientific, and Medi-
cal (ISM) band, which makes them likely to experience inter-
ference by other radio technologies using the same frequen-
cies, e.g., Wi-Fi, classic Bluetooth, or IEEE 802.15.4. Such
interference, as well as multipath fading, may cause packet
loss that decreases the link-layer reliability of BLE.

To mitigate the effects of link-layer packet loss, BLE ra-
dios may blacklist channels with poor quality by updating the
channel map (Cmap) of the connection at runtime. A connec-
tion’s Cmap specifies which data channels may be selected
by the AFH algorithm; a channel disabled in the Cmap will
not be used for communication until being whitelisted (re-
enabled) again. The BLE specification defines standardized
commands that a master can use to update the Cmap of an
active connection; a slave is not allowed to change the Cmap.
However, when and how a master updates the Cmap is not
defined by the BLE specification. This leaves it up to devel-
opers to implement an effective blacklisting strategy, often
leading to ineffective solutions on existing systems [32].
Link-layer ACK and flow control. To provide a reliable
data exchange, the BLE link layer automatically handles
packet acknowledgment (ACK) and flow control. This is
achieved using a 1-bit Sequence Number (SN) and a 1-bit
Next Expected Sequence Number (NESN) in each link-layer
header. A link-layer packet is only successfully acknowl-
edged when a BLE radio receives a NESN that is not equal
to the SN of the transmitted packet. The link-layer packet is
automatically retransmitted until a valid ACK is received.
PHY modes. Devices supporting BLE version 5 and above
are able to choose one out of four physical (PHY) modes:
the 1M, the 2M, the Coded S2, and the Coded S8 PHY [4].

The 1M PHY, where the M stands for Megasymbols/s
(Msym/s), is the original mode of BLE and is the only avail-
able PHY on BLE devices with a version below 5. The 1M
PHY uses a physical modulation of 1 Msym/s, no symbol
coding, and no Forward Error Correction (FEC). Similarly,
the 2M PHY mode uses no symbol coding and no FEC; how-
ever, it uses a physical modulation of 2 Msym/s leading to
twice the data throughput compared to the 1M PHY [33].

The Coded S2 or the Coded S8 PHY modes use symbol
coding and FEC to reconstruct flipped bits in received pack-
ets, leading to a more robust communication [33]. Like the
1M PHY, both Coded PHYs use a physical modulation of
1 Msym/s. The Coded S2 PHY uses a symbol coding of 2,
resulting in a maximum physical data rate of 500 kb/s. Like-
wise, the Coded S8 PHY uses a symbol coding of 8, resulting
in a maximum physical data rate of 125 kb/s.

3 Experimental Study of BLE Reliability
We investigate next how to estimate the link quality of

BLE links based on information gathered by the link layer on
standard BLE radios. We first list available link-layer met-
rics in Sect. 3.1 and show their behavior in Sect. 3.2. We
further evaluate the impact of different PHY modes on BLE
reliability in Sect. 3.3 and discuss our findings in Sect. 3.4.
3.1 BLE Link Quality Metrics

We estimate the link quality of BLE data channels on
master devices, which has several benefits that originate in

the BLE specification [4]. First, the BLE master is usu-
ally less energy constrained (it is constantly powered or fre-
quently charged) and can afford to probe the RF environ-
ment (e.g., to measure the noise floor). Second, the master
receives feedback on link-layer transmission within the same
connection event, while on the slave this feedback is delayed
(see Sect. 2). Third, only the master is allowed to black- and
whitelist data channels used by the BLE connection.

To be compliant with the BLE specification [4], we pas-
sively estimate the link quality based on metrics available
in the BLE link layer. Using an active approach that ex-
changes link-layer probe packets as done in the context of
IEEE 802.15.4 [14] is not suitable for our approach, because
sending additional probe packets is not compliant with the
BLE specification. Furthermore, probe packets would intro-
duce additional radio time and increase power consumption.

We focus on link-layer metrics that are hardware-agnostic
and available on standard BLE radios allowing access to the
link layer. We hence consider the following metrics:
Noise floor. We measure the noise floor of an individual data
channel by probing the channel when the BLE radio does not
exchange packets. This provides us with information on any
nearby technology using the 2.4 GHz ISM band.
Signal-to-Noise Ratio (SNR). We calculate the SNR of ev-
ery successfully received link-layer packet, by measuring a
packet’s Received Signal Strength Indicator (RSSI) and sub-
tracting the current noise floor on the used data channel.
Packet Delivery Ratio (PDR). To measure the PDR, we
adapt the work in [11] (based on IEEE 802.15.4) to be used
in BLE connections. Because we are unable to arbitrarily
probe individual channels, we use existing link-layer header
fields to calculate the PDR of link-layer exchanges. The
PDR measures the round-trip reliability of individual link-
layer transmissions issued by a master and is computed as:

PDR =
#ACK(S→M)

#T X(M→ S)
, (1)

where #T X(M→ S) is the number of issued link-layer trans-
missions from master to slave and #ACK(S→M) is the num-
ber of received valid link-layer acknowledgments. A link-
layer acknowledgment from the slave is considered valid if
it carries a valid CRC checksum and an updated NESN. As a
result, every individual link-layer transmission can be either
successful (PDR = 100%) or unsuccessful (PDR = 0%).
3.2 Measuring BLE Link Quality

We study the metrics from Sect. 3.1 in multiple scenarios
to gain an understanding about the insights they provide.
Experimental setup. To have full control over the RF en-
vironment, we perform all experiments in a wireless testbed
located in a laboratory. During all our tests, the lab is vacant
and all Wi-Fi access points in proximity are deactivated, to
limit the impact of Wi-Fi activity on our results.

We use two Nordic Semiconductor nRF52840 DK
(nRF52) [24] exchanging data over a BLE connection: one
device acts as master and the other one as slave. While the
master uses its on-board PCB antenna for communication,
we mechanically remove the PCB antenna of the slave to
eliminate undesirable overlapping antenna effects and con-
nect a programmable attenuator [21] as well as a 2.4 GHz
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Figure 2. BLE link quality under gradually changing attenuation.

antenna (with a gain of 3 dB) to the external antenna connec-
tor of the nRF52. This setup allows us to manually reduce
the power of the signal that is sent and received by the slave.

For this experimental campaign, master and slave have
free line of sight and a distance of approx. 10 m. The mas-
ter initiates a BLE connection with a connection interval of
50 ms and a slave latency of 0 and subscribes to a BLE GATT
attribute on the slave. The slave issues a GATT indication on
this attribute (with a link-layer length of 27 B) every 500 ms.

Both master and slave run the Zephyr OS [35], which
comes with a standard-compliant BLE stack supporting BLE
version 5. We adapt the link-layer implementation of the
master to log the PDR and SNR of every link-layer transmis-
sion. The master also measures and logs the noise floor of
each data channel after every connection event.

For these experiments, the connection uses the Channel
Selection Algorithm (CSA) #2 of BLE 5 and the 1M PHY
mode. The master does not use blacklisting, which is the
default behavior of an nRF52 device running the Zephyr OS.
Methodology. We measure the behavior of the link qual-
ity metrics under changing antenna attenuation (Sect. 3.2.1),
Bluetooth (Sect. 3.2.2), and Wi-Fi interference (Sect. 3.2.3).

The noise floor shown in Figs. 2 to 4 is the maximum
noise floor recorded on each channel within every second.
Likewise, the SNR plots in Figs. 2 to 4 show the average
SNR within a second on every channel. When the mas-
ter does not receive a link-layer ACK from the slave (and
hence no RSSI value), the SNR of this unsuccessful packet
exchange is discarded and these exchanges are marked in
brown. In addition to the SNR per channel, we calculate the
average SNR (Avg. SNR) across all used BLE data channels.

The PDR of individual link-layer transmissions is calcu-
lated as explained in Sect. 3.1. Figs. 2 to 4 show the average
PDR within a second per channel. We classify each channels
into good, intermediate, and poor based on its PDR, adapt-
ing the approach proposed by Srinivasan et al. [34]. Chan-
nels with a PDR < 10% are classified as poor; channels with
a PDR between 10% and 90% are classified as intermediate;
channels sustaining a PDR ≥ 90% are classified as good.

Please note that, in Figs. 2 to 4, when a data channel is not
used within a second, its PDR and SNR are marked in white.

3.2.1 Changing Antenna Attenuation
First, we investigate how the link quality of the BLE data

channels is affected when the wireless signal is attenuated,
e.g., due to an increasing communication distance or obsta-
cles blocking the line of sight. Using the programmable
attenuator, we change the slave’s antenna attenuation over
time, mimicking a slave that moves away from the master.

Fig. 2 shows the measured noise floor, the average SNR
of all used data channels, the SNR per data channel, and the
PDR per data channel under changing attenuation over time.
The effective attenuation of the BLE master starts at 0 dB
(3 dB from the antenna gain minus a programmed attenua-
tion of 3 dB) and, from time 0 to 30 s, the effective atten-
uation increases linearly to 10 dB. The attenuation stays at
10 dB for 120 s, before gradually going back to an effective
attenuation of 0 dB, where it stays until the end of the expe-
riment. We can see that the Avg. SNR reflects this change
in attenuation and that the PDR of some data channels de-
creases significantly when a high attenuation is used.

The data in Fig. 2 shows that the noise floor measure-
ments are not able to detect any of these link quality prob-
lems. As expected, the Avg. SNR captures the change in
signal strength and the SNR measurement per channel de-
tects when the master is not able to successfully receive a
link-layer packet. SNR measurements, however, do not de-
tect when a valid link-layer packet was received, but its CRC
or NESN indicate a bad packet transmission. Only the PDR
measurements are successfully able to capture all link-layer
packet loss caused by a high antenna attenuation.
3.2.2 Classic Bluetooth Interference

Next, we measure BLE’s link quality under external in-
terference caused by co-located classic Bluetooth devices.

Like BLE, classic Bluetooth uses the 2.4 GHz ISM band
and employs frequency hopping. However, classic Bluetooth
uses a different modulation scheme with 1 MHz wide chan-
nels and is optimized for data throughput. In our experi-
ments, we keep the effective attenuation at 0 dB and use two
pairs of Pi3 sending Bluetooth RFCOMM packets of 1000 B
length every 11.034 ms. This results in two classic Bluetooth
connections, each exchanging packets at 725 kbit/s.

Fig. 3 shows the various link quality metrics in the pres-
ence of Bluetooth interference, generated for roughly 120 s,
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Figure 3. BLE link quality under classic Bluetooth RFCOMM interference on two co-located Bluetooth connections.
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Figure 4. BLE link quality under Wi-Fi interference on Wi-Fi channel 11 located near the BLE slave.

starting 30 s from the beginning of the experiment. The data
shows that classic Bluetooth interference decreases the reli-
ability of the BLE connection on all data channels.

In this scenario, the noise floor measurements are barely
able to detect the co-located radio communication. The Avg.
SNR and the SNR per channel are able to detect the Blue-
tooth interference, but SNR readings may actually underes-
timate the link quality in this case, as several SNR values are
very low (SNR < 5 dBm), even though a successful packet
exchange is possible. Similar to the previous scenario, only
the PDR is able to accurately capture link-layer packet loss
caused by co-located Bluetooth RFCOMM interference.
3.2.3 Wi-Fi Interference

We measure next the link quality of the data channels in
the presence of radio interference generated by co-located
Wi-Fi devices. To generate the Wi-Fi interference, we use
a Pi3 in our testbed, located near the BLE slave and run
JamLab-NG [28] to generate Wi-Fi packets on Wi-Fi chan-
nel 11 with a length of 1500 B every 10 ms and a transmis-
sion power of 30 mW. In this experiment, we keep the effec-
tive antenna attenuation constant at 0 dB.

Fig. 4 shows the link quality metrics in the presence of
Wi-Fi interference, generated for roughly 120 s, starting 30 s
from the beginning of the experiment: overall, the Wi-Fi in-
terference significantly decreases the link-layer reliability.

In this scenario, the noise floor measurements detect the
Wi-Fi interference. Similar to Sect. 3.2.1, the SNR measure-
ments detect when the master is not able to successfully re-
ceive link-layer packets, but do not detect failures due to in-
valid CRC or missing NESN updates. PDR measurements
accurately detect link-layer errors due to Wi-Fi interference.

3.3 Using Different PHY Modes
We investigate how the used PHY mode of the BLE con-

nection affects reliability. In contrast to existing work [33],
we evaluate how individual data channels behave under var-
ious link conditions when using the different PHY modes.
Antenna attenuation. We repeat the experiment from
Sect. 3.2.1 with all four PHY modes of BLE 5. Fig. 5 shows
the average PDR and average SNR per channel for the differ-
ent PHYs measured while applying an effective attenuation
of 10 dB. Data channels with an average PDR < 90 % are
classified as bad (marked in red), while channels with an av-
erage PDR≥ 90 % are classified as good (marked in yellow).

In this experimental scenario, the used PHY has a signifi-
cant effect on the overall reliability of the BLE connection
and the number of data channels classified as good. When
using the fastest 2M PHY, 22 of the available data channels
are bad, compared to the 8 bad channels when using the 1M
PHY. Due to their use of FEC and symbol coding, the Coded
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(b) 1M PHY Mode.
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(c) Coded PHY (S2) Mode.
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(d) Coded PHY (S8) Mode.
Figure 5. Average PDR and SNR of all data channels using different PHYs and an antenna attenuation of 10 dB. We see
that the used PHY mode of the BLE connection significantly affects the overall link-layer reliability in this scenario.
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(c) Coded PHY (S2) Mode.
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(d) Coded PHY (S8) Mode.
Figure 6. Average PDR and SNR of all data channels using different PHYs under Wi-Fi interference on channel 11. We
see that the used PHY mode of the BLE connection does not significantly affect the overall link-layer reliability in this scenario.

S2 and S8 PHYs are able to sustain a high PDR even for
channels that have a low average SNR. Therefore, switching
to a more robust PHY mode when experiencing a low signal
strength significantly increases link-layer reliability.
Radio interference. Next, we repeat the experiment from
Sect. 3.2.3 with all PHY modes of BLE 5. Fig. 6 shows the
average PDR and average SNR per channel measured when
Wi-Fi interference was generated near the BLE slave.

Unlike the previous experiment, the used PHY mode does
not significantly improve the reliability of the BLE connec-
tion and the number of good data channels under external
interference. All four PHYs experience similar link qual-
ity problems on the data channels affected by the co-located
Wi-Fi interference on Wi-Fi channel 11. The 2M PHY pro-
vides an overall PDR of 83 %, while the Coded S8 PHY leads
to an overall PDR of 86 %. Switching the PHY from the 2M
PHY to the most robust Coded S8 PHY would only increase
the PDR of the BLE connection by 3 %. If we would black-
list all poor channels in this scenario, instead, the BLE con-
nection would have an overall PDR > 99 % for all PHYs.
Note that, in contrast to the data shown in Fig. 5, link-layer
packet loss caused by radio interference does not cause the
average SNR on the affected data channels to drop.
3.4 Lessons Learned

Based on our results, we draw the following conclusions.
Noise floor. Noise floor measurements of data channels suc-
cessfully detect link-layer loss caused by external radio inter-
ference (Sect. 3.2.2 and 3.2.3). However, the noise floor fails
to capture link-layer loss caused by a weak signal strength,

e.g., due to a large communication distance (Sect. 3.2.1).
SNR per data channel. SNR measurements detect link-
layer loss on individual channels, when link-layer packets
are missing and therefore no SNR can be calculated. SNR
readings, however, miss link problems indicated by an in-
valid CRC or missing update of NESN. Furthermore, clas-
sifying channels based on recent SNR readings may result
in an inaccurate classification, as some successful link-layer
exchanges may have an SNR below 5 dBm that would indi-
cate a problem based on the measurements shown in Fig. 5.
Average SNR. The Avg. SNR across all used channels ac-
curately captures the signal strength of the BLE connection.
The Avg. SNR can be used to detect when a BLE connec-
tion is experiencing link-layer errors due to weak signal, e.g.,
caused by a long communication distance. Furthermore, the
Avg. SNR is not significantly affected by external radio in-
terference, as shown in Fig. 3 and Fig. 4. Therefore, the SNR
can be used to detect when the connection’s signal strength
is the problem for link-layer loss, as we show in Sect. 5.
Packet Delivery Ratio. As expected, PDR readings accu-
rately detect any link-layer packet loss across all of our ex-
periments. This makes PDR the most suitable metrics to de-
tect and blacklist poor data channels, as we show next.

4 BLE Channel Blacklisting
Using our findings from Sect. 3, we design an effective

channel blacklisting mechanism that passively monitors the
individual data channels and classifies them into good and
bad. Good channels experience zero or few link-layer er-
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Figure 7. PDR of the BLE connection (PDRconn) and
number of active channels (Cactive) at the end of each
experiment for different filtering mechanisms. Overall,
the PDRAV G≥95% approach provides the best trade-off be-
tween reliability (PDRconn) and data channel usage (Cactive).

rors, while bad channels have an insufficient link quality and
should not be used for communication. Similar to the work
in [11], our goal is not to exactly estimate the link quality of
a channel, but to detect when a channel is experiencing prob-
lems (e.g., due to radio interference or weak signal strength)
in order to blacklist it. To this end, we study the best way
to detect bad channels at runtime (Sect. 4.1), when and how
to blacklist channels (Sect. 4.2), as well as when to whitelist
the channels of an active BLE connection (Sect. 4.3).
4.1 Detecting Bad Channels at Runtime

To find the most suitable way to detect bad data channels,
we use the experimental traces from Sect. 3.2 and investi-
gate the performance of different channel classification ap-
proaches. For every scenario, we simulate the behavior of
one channel classification approach and calculate the overall
PDR of the BLE connection (PDRconn) and the number of
active channels (Cactive) at the end of each experiment.

Therefore, we step through each experimental trace and
increase #T X(M → S) by one for every issued link-layer
packet. If the transmission was successful (PDR = 100%),
we also increase #ACK(S→ M) by one. With #T X(M →
S) and #ACK(S→ M), we calculate PDRconn using Eq. 1.
While stepping through an individual trace, we simulate
the behavior of different channel classification approaches.
Whenever the used classification approach detects a bad data
channel, we mark it as blacklisted and do not count any sub-
sequent link-layer exchanges on this channel. This simulates
the actual channel blacklisting behavior that we implement
on standard BLE devices, which is described in Sect. 6.

Fig. 7 shows PDRconn and Cactive of the six investigated
channel classification approaches in three different experi-
mental scenarios. All investigated approaches calculate the
moving average (PDRAV G) of recent PDR values using a win-
dow length WPDR, as only the PDR detects all link-layer fail-
ures independent of their cause (see Sect. 3).

The approach PDRAV G=100% aggressively blacklists in-
dividual data channels on their first link-layer packet loss.
The PDRAV G≥95% approach uses a WPDR = 20 and black-
lists a channel when its PDRAV G drops below 95 %. Simi-

larly, PDRAV G≥ 90% uses a WPDR = 10 and a threshold of
90 %. The chosen WPDR for every approach is the minimum
window that still allows to measure the PDRAV G in the nec-
essary resolution. To measure the PDR of a channel with a
resolution of 5%, which is necessary for our PDRAV G≥95%
approach, we need at least a WPDR = 20.

Out of these classification approaches, PDRAV G≥95% is
able to sustain an average PDRconn = 98.6 % and a mini-
mum PDRconn = 97.8 % in all three scenarios. Although
the PDRAV G = 100% provides a slightly higher average
PDRconn = 98.7 %, its aggressive behavior leads to a signif-
icantly lower Cactive, which may result in a terminated BLE
connection when sudden radio interference appears.

In addition to the first three approaches using only
PDR measurements, we investigate if additional information
about the average noise floor (NFAV G) or SNR (SNRAV G) im-
proves channel blacklisting. We use the PDRAV G≥95% ap-
proach and combine it with NFAV G and SNRAV G, leading to
three additional classification approaches; all of them use a
WPDR = 20 for filtering PDRAV G, NFAV G, and SNRAV G. The
individual configurations for these approaches were chosen
by running every scenario with every threshold combination
and selecting the best combination for the average case.

Overall, the PDRAV G ≥ 95% approach is the most suit-
able channel classification approach for blacklisting. With
its ability to sustain a PDRAV G above 97.8 % while provid-
ing an average Cactive of 21 channels, PDRAV G≥ 95% pro-
vides the most suitable trade-off between link-layer reliabil-
ity and number of active channels. Based on our experiments
in Sect. 3, we see that sudden Wi-Fi interference may af-
fect up to 10 subsequent BLE data channels. Sustaining a
Cactive > 10, as the PDRAV G≥ 95% is able to do, mitigates
BLE connection loss due to sudden co-located Wi-Fi traffic.

4.2 Blacklisting BLE Data Channels
Next, we discuss the necessary steps between detecting a

bad channel and excluding it from further communication.
Issuing a channel map update. As detailed in Sect. 2, only
the BLE master can update the used channel map (Cmap) of
a BLE connection by sending an LL_CHANNEL_MAP_IND re-
quest to the slave. This request carries a 37-bit data Cmap
that indicates if a channel is used in the connection or not.
If the corresponding bit of a data channel is set, the channel
is actively used for communication, otherwise it is not and
is hence blacklisted. A blacklisted channel stays inactive
until another LL_CHANNEL_MAP_IND request whitelists (re-
enables) the channel. A slave receiving this request cannot
negotiate and needs to adhere to the received information.

In our approach, we update Cmap as soon as we detect
that a data channel is bad. If the master has recently issued
a Cmap update that has not yet been acknowledged by the
slave, the master waits for this ACK and then immediately
issues a new Cmap update. This approach may create a sepa-
rate LL_CHANNEL_MAP_IND request for every blacklisted data
channel, resulting in additional radio time. However, send-
ing multiple LL_CHANNEL_MAP_IND requests does not signif-
icantly increase the power consumption, as shown in Sect. 7.
Mandatory update delay. According to the BLE specifi-
cation [4], a new Cmap only takes effect after a mandatory
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delay of at least 6 connection events. This means when a
BLE master detects a bad channel and therefore issues an
LL_CHANNEL_MAP_IND request at connection event N, the
new Cmap is used starting from connection event N + 6.
Hence, a channel already marked as blacklisted may be used
in another connection event, before being actually disabled.
To maintain interoperability with standard-compliant BLE
devices, however, we adhere to this mandatory delay.
Clearing information about blacklisted channels. As soon
as a channel is blacklisted, we are not able to estimate its link
quality using our approach. Therefore, any link-layer infor-
mation of blacklisted channels needs to be cleared, as it may
have expired. Only when a data channel is whitelisted, we
collect fresh information to accurately estimate its quality.
4.3 Whitelisting BLE Data Channels

As mentioned above, when a channel is blacklisted all of
its link quality information may be outdated. Hence, we can-
not observe when a blacklisted channel turns good in order
to whitelist it. One possible solution for this is to exchange
additional probes on blacklisted channels to measure their
PDR. This, however, is not compliant to the BLE specifi-
cation and would introduce an unnecessary overhead. An-
other approach is to whitelist data channels on a time basis,
i.e., re-enable blacklisted channels several seconds after be-
ing blacklisted. Finding a suitable timeout, however, largely
depends on the actual cause of current link-layer packet loss.

In this work, we trigger a whitelisting whenever the num-
ber of active channels in the current data channel map drops
below the minimum number of data channels (Cmin).3 In par-
ticular, we re-enable all 37 data channels and probe them us-
ing regular connection events to measure their PDRAV G: this
allows us to get the most accurate link quality estimation of
the usable channels. Using this approach, whenever the mas-
ter blacklists a bad channel, it first checks the number of used
data channels: if the number of used channels drops below
Cmin, the master performs the following procedure.
Updating the connection interval. During whitelisting, we
re-enable data channels with unknown link quality, which
can cause link-layer errors leading to high latencies [32]. To
ensure a reliable data exchange during whitelisting, we adapt
the used BLE connection interval to a faster setting before
re-enabling any data channel. During whilelisting, we tem-
porarily overprovision (OWL) the BLE connection by:

OWL = dCmax/Cmine , (2)
where Cmin is the number of channels used before initiat-
ing a whitelisting and Cmax is the number of channels that
are probed during whitelisting. Since we enable all 37 data
channels during whitelisting, Cmax = 37 for our approach.

The faster connection interval (conn intWL) temporarily
used during whitelisting is calculated as:

conn intWL = conn int/OWL, (3)
where conn int is the connection interval used before
whitelisting and OWL is the necessary overprovisioning cal-
culated by Eq. 2. For example, if we use a Cmin = 10 and a

3 Since BLE 5, a slave can change the minimum number of data channels
by sending an LL_MIN_USED_CHANNELS_IND request to the master. Older
BLE devices do not have this possibility and only mandate that Cmin ≥ 2.

Cmax = 37, we need to change the connection interval to be
OWL = 4 times faster to mitigate the effects of potential link-
layer errors on BLE transmission delays during whitelisting.

Similar to the channel map update, updating the connec-
tion interval requires a delay of at least 6 connection events
between issuing and using the new connection interval [4].
Probing data channels. After the temporary conn intWL has
been set, we issue a data channel map update re-enabling all
37 BLE data channels to probe their link quality. During this
probing phase, we use ordinary BLE connection events to
measure the PDRAV G and link quality of the individual data
channels, as discussed in Sect. 4.1. In this phase, however,
we temporarily disable channel blacklisting to get the most
accurate estimation of each channel’s link quality.

This probing phase lasts for tprobe, in which we probe ev-
ery data channel Schannel times. tprobe is calculated as:

tprobe = Schannel ·Cmax · conn intWL, (4)
where Schannel is the number of samples per channel, Cmax is
the number of BLE data channels, and conn intWL is the con-
nection interval used during probing, calculated with Eq. 3.

After the probing phase has ended, we blacklist any poor
channels and revert back to the original conn int, resuming
communication with the original BLE connection parame-
ters and a new channel map with only reliable data channels.
5 BLE PHY Mode Adaptation

We design a PHY mode adaptation mechanism allowing
BLE devices to sustain a specified link-layer reliability while
limiting unnecessary power consumption. Specifically, the
proposed adaptation mechanism passively monitors recent
SNR measurements to detect when a change is necessary.

As discussed in Sect. 3, the average SNR over used data
channels accurately captures the BLE signal strength and is
not significantly affected by external radio interference. As
a result, our proposed PHY mode adaptation mechanism is
independent from the blacklisting mechanism presented in
Sect. 4, making both mechanisms easily portable to other
hardware platforms. In case a device does not support differ-
ent BLE PHY modes, such as the Raspberry Pi 3, we can use
our channel blacklisting mechanism to improve reliability.
On devices supporting different PHY modes, both mecha-
nisms work together in parallel to improve reliability while
minimizing power consumption, as we show in Sect. 7.

As the BLE specification allows slaves to change the used
PHY mode, any BLE device may make use of our proposed
PHY mode adaptation to increase link-layer reliability.

Next, we discuss how to filter recent SNR readings
(Sect. 5.1), choose a suitable PHY mode (Sect. 5.2), and
adapt the used PHY mode of a BLE connection (Sect. 5.3).
5.1 Filtering SNR Readings

We use a moving average filter on recent SNR values on
all used data channels to predict the SNR of future link-layer
exchanges. To find a suitable window length WSNR for our
SNR filter, we reuse the experimental setup employed to de-
rive Fig. 2 for different antenna attenuation settings and PHY
modes. We step through these traces and investigate which
WSNR leads to the best predictions of the average SNR of sub-
sequent link-layer exchanges. For this evaluation, we choose
a prediction window of 100 future link-layer exchanges.

151

8 Publications

– 165 –



0 10 20 30 40 50 60 70 80 90 100
WSNR

70
75
80
85
90
95

100

C
or

re
la

tio
n 

[%
]

1M PHY Coded S8 PHY Average

(a) Attenuation = 10 dB.

0 10 20 30 40 50 60 70 80 90 100
WSNR

70
75
80
85
90
95

100

C
or

re
la

tio
n 

[%
]

1M PHY Coded S8 PHY Average

(b) Attenuation = 20 dB.

Figure 8. Correlation of the predicted and actual future
SNR for different observation window lengths (WSNR).
The data suggest that using a WSNR of 25 provides the best
prediction of future SNR values across both scenarios.
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Figure 9. Relationship between average PDR and the av-
erage SNR of a BLE connection for different PHY modes.

Fig. 8 shows the correlation between predicted average
SNR, filtered with different WSNR, and the actual future av-
erage SNR. The data shows that using a WSNR = 25 to filter
recent link-layer exchanges provides the most accurate esti-
mation of future SNR across the investigated traces.

5.2 Choosing a Suitable PHY Mode
Using the filtered SNR readings, a device can choose the

most suitable PHY mode that sustains a specified minimum
link-layer reliability (PDRmin) while limiting unnecessary
power consumption. To find the relationship between aver-
age SNR and PDR, we re-use the data captured in Sect. 5.1
for different attenuation settings. We process each trace and
calculate the average PDR and the average SNR during the
time of constant attenuation (time 30 to 150 s in Fig. 2).

Fig. 9 shows the relationship between average SNR and
PDR for three different PHY modes. We only investigate
the Coded S8 PHY because the symbol coding used by the
Coded PHY (either S2 or S8) is decided by every individual
BLE device and cannot be negotiated at runtime. Therefore,
we fix symbol coding for the Coded PHY mode to S8 on our
devices, as this provides the highest reliability (see Fig. 5).

As expected, the Coded S8 PHY mode sustains the high-
est average PDR for a given SNR. For example, while the
Coded S8 PHY provides an average PDR above 98.5 % for
an SNR of 20 dBm, 1M and the 2M PHY only sustain an
average PDR of approx. 82 % and 66 %, respectively. This
increased reliability, however, comes with the cost of addi-
tional power consumption caused by the longer radio times
of the Coded S8 PHY. Using the setup from Sect. 3.2, a slave
using the Coded S8 PHY has an average power consumption
of 581.79 µA, while the same slave using the 1M or the 2M
PHY consumes 407.93 µA and 397.07 µA, respectively.

Our measurements show that a slave using the 1M PHY
consumes only slightly more power (approx. +2.73 %) com-
pared to using the 2M PHY, but the 1M PHY provides a sig-
nificantly higher link-layer reliability across all our tests. We
therefore argue that using the 2M PHY does not pay off in
application scenarios where devices need to sustain a given
PDRmin on a constrained energy budget and data throughput
is not an issue. In such applications, one should make use of
the data shown in Fig. 9 to decide between the Coded S8 and
the 1M PHY mode based on the average experienced SNR.
5.3 Adapting the Used PHY Mode

Using a specified PDRmin, our PHY mode adaptation se-
lects a SNR threshold (SNRPHY ) based on the data in Fig. 9.
When the average SNR is ≥ SNRPHY , our mechanism uses
the 1M PHY to conserve energy. When the average SNR is
below SNRPHY , our mechanism chooses the Coded S8 PHY
to sustain PDRmin. If a device operates at approximately
SNRPHY , it may continuously switch between the two PHY
modes, which may lead to additional power consumption or
a PDR below PDRmin. To mitigate such behavior, we switch
to the Coded S8 PHY when the average SNR drops below
SNRPHY , but only switch to the 1M PHY, when the average
SNR ≥ SNRPHY + SNRo f f set . To find a suitable SNRo f f set
for our PHY adaptation mechanism, we use the traces col-
lected in Sect. 5.2 and investigate the number of PHY mode
adaptations (Nadapt ) for different SNRo f f set and attenuations
when using the filtering mechanism from Sect. 5.1. Fig. 10
shows that even a SNRo f f set = 1 dBm mitigates unnecessary
PHY mode adaptations across all our tests.

To adapt the used PHY mode, we use the standardized
PHY update procedure defined by the BLE specification [4].
Similar to the channel map update, adapting the PHY mode
requires a mandatory delay of 6 connection events.

6 Implementation
To show the portability of our mechanism, we implement

our approaches on two popular platforms: the Nordic Semi-
conductor nRF52 (Sect. 6.1) and Raspberry Pi 3 (Sect. 6.2).
6.1 Nordic Semiconductor nRF52

We run the Zephyr OS [35] on the nrf52840 chip, which
embeds an ARM Cortex-M4F processor providing 1024 kB
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Figure 10. Number of PHY mode adaptations (Nadapt )
for different thresholds and antenna attenuation values.
Even an SNRo f f set = 1dBm eliminates unnecessary PHY
mode adaptations (Nadapt ) on stable links.

of flash and 256 kB of memory, as well as a standard-
compliant BLE 5 radio supporting all four PHY modes. Al-
though we use the nrf52840 chip in our experiments, our
code runs on all chips that are part of the nRF52 series.

Zephyr already provides a fully standard-compliant BLE
communication stack that allows link-layer access. We mod-
ify the existing BLE stack by extending the lll_conn_isr_
rx function of the link-layer implementation. This function
is called after every link-layer packet reception and provides
information about the packet’s data channel, PDR, and RSSI.
After every successfully received packet, we probe the noise
floor of the used channel to calculate the packet’s SNR.

Our channel blacklisting mechanism is notified about the
used channel and PDR of every link-layer packet exchange
by a callback in lll_conn_isr_rx. Using this information,
our blacklisting mechanism detects bad channels and black-
lists them, using the PDRAV G≥95% channel classification, a
Cmin = 10, and a Schannel = 10, as described in Sect. 4.

Similarly, our PHY mode adaptation mechanism receives
a new SNR readings after every successful packet reception
via a callback in lll_conn_isr_rx. Using recent SNR val-
ues, our PHY mode adaptation chooses the best PHY that
sustains a PDRmin > 99% while minimizing power consump-
tion, following the approach discussed in Sect. 5.

6.2 Raspberry Pi 3
The Pi3 uses Broadcom’s BCM43430A1 chip for BLE com-

munication [26]. This proprietary radio chip is closed source
and autonomously handles all BLE’s link-layer functionality,
as well as classic Bluetooth and Wi-Fi communication. With
InternalBlue [19], the firmware of most Cypress and Broad-
com chips, including the BCM43430A1, can be analyzed and
even patched with custom Assembly code.

To use our channel blacklisting mechanism on the Broad-
com BLE radio, we use InternalBlue to analyze the han-
dling of BLE link-layer packets in this radio chip. We de-
tect that the function _connTaskRxDone is called upon re-
ception of any BLE link-layer packet. In this function, we
can retrieve the used data channel and PDR of the most
recent link-layer exchange, which we use for blacklisting.
We extend the _connTaskRxDone function by patching the
radio’s firmware to send a custom Host Controller Inter-
face (HCI) event, containing the most recent data channel
and PDR, over the standardized HCI to the BLE host after
every link-layer transmission. We parse these HCI pack-
ets in InternalBlue and perform channel blacklisting as de-
scribed in Sect. 4. Whenever we need to update the data
channel map of the connection, we issue a standardized
Host_Channel_Classification command via the HCI to

the BLE radio. Using the standardized HCI, our approach is
still fully compliant to the BLE specification.

The Broadcom radio already implements basic BLE chan-
nel blacklisting and radio co-existence mechanism that run
autonomously in the background. Our channel blacklisting
extends the channel blacklisting on the Pi3, but does not dis-
able these existing link-quality improvements.

As the BCM43430A1 radio only supports the 1M PHY, we
do not implement PHY mode adaptation on the Pi3.

7 Evaluation
In this section, we experimentally study the performance

of the proposed blacklisting mechanism alone (Sect. 7.1) and
in parallel to the PHY mode adaptation scheme (Sect. 7.2).
Experimental setup. For this evaluation, we use an ex-
perimental setting similar to the one described in Sect. 3.
To evaluate the power consumption of the BLE slave, we
measure the slave’s average current draw (ISlave) using D-
Cube [27]. We focus on the consumption of the slave, as the
latter usually operates on a tight energy budget (see Sect. 2).

To measure the overall link-layer reliability (PDR), we
parse the link-layer logs of the used master devices and cal-
culate the PDR across the whole BLE connection.
Experimental scenarios. Following the methodology used
in Sect. 3.2, our experiments start with an effective antenna
attenuation of 0 dB and without any external radio interfer-
ence. After the BLE connection is established, we wait for
60 s before either changing the attenuation or introducing ra-
dio interference. We gradually vary the effective attenuation
of the slave antenna over 30 s from 0 dB to either 10 dB or
20 dB. We keep the attenuation at this setting for 600 s be-
fore gradually reverting back to 0 dB over 30 s. For scenarios
investigating the reliability under interference, we start inter-
ference for a duration of 600 s, as described in Sect. 3.2.
7.1 Evaluating BLE Channel Blacklisting

We evaluate the performance of our proposed channel
blacklisting mechanism by measuring PDR and ISlave in three
different experimental scenarios and on two different hard-
ware platforms, as described in Sect. 6. During this experi-
ments, we disable our PHY mode adaptation mechanism.

Fig. 11 shows the average PDR and ISlave for five differ-
ent blacklisting mechanisms in three scenarios, where every
experiment was repeated 5 times. Two bars show the default
behavior of the nRF52 (Default nRF52) and the Raspberry
Pi 3 (Default Pi3). The two bars named Blackl. nRF52 show
the performance of our channel blacklisting mechanism im-
plemented on the nRF52 master for Channel Selection Algo-
rithm (CSA) #1 and CSA #2 . The bar named Blackl. Pi3
shows the Pi3 using our blacklisting mechanism.

Overall, we see that our proposed channel blacklist-
ing mechanism significantly increases the reliability (PDR)
without introducing additional power consumption (ISlave).
Compared to the default behavior of the nRF52 and Pi3, our
mechanism improves the PDR by up to +22 % and +10 %, re-
spectively. The used CSA does not significantly impact the
link-layer reliability, as shown by the similar performance of
Blackl. nRF52(CSA #1) and Blackl. nRF52(CSA #1).

In case of an antenna attenuation of 10 dB (Fig. 11(a)),
our mechanism on the nRF52 sustains a PDR over 99 %.
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Figure 11. Link-layer reliability (PDR) and the slave’s average current consumption (ISlave) of different blacklisting
mechanisms in three scenarios. The connection was either using Channel Selection Algorithm #1 (CSA #1) or CSA #2.
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Figure 12. Link-layer reliability (PDR) and the slave’s average current consumption (ISlave) for five different configura-
tions. Running both mechanisms in parallel (Blackl. + PHY) provides a PDR > 99% while minimizing power consumption.

On the Pi3, our mechanism improves the PDR by over 1 %,
reaching an overall PDR of 98.45 %. The reason for the
slightly lower PDR on the Pi3 compared to the nRF52 is the
proprietary radio coexistence mechanism constantly running
on the Pi3, which autonomously re-enables data channels.

Under Wi-Fi interference near the BLE master (Fig.
11(b)), the default behavior of the Pi3 sustains a PDR above
99 %. This matches findings by Spörk et al. [32] showing
that the Pi3 likely uses noise floor measurements to pro-
actively blacklist interfered channels. Nevertheless, our pas-
sive blacklisting mechanism sustains a comparable PDR in
this setting. Under Wi-Fi interference near the BLE slave
(Fig.11(c)), the default blacklisting mechanism of the Pi3
does not detect link-layer errors and is only able to sustain a
PDR of 84.71 %. Our proposed blacklisting mechanism, in-
stead, increases the PDR on the Pi3 by almost 10 %. Overall,
in all three experimental scenarios, our blacklisting mecha-
nism on the nRF52 is able to sustain a PDR above 99 %.

7.2 Evaluating PHY Mode Adaptation
To evaluate the performance of our proposed PHY mode

adaptation mechanism on the nRF52, we re-run the exper-
iments from Sect. 7.1 with five different configurations: no
blacklisting and a fixed 1M PHY mode (Fixed 1M); no black-
listing and a fixed Coded S8 PHY mode (Fixed S8); and our
blacklisting mechanism and a fixed 1M PHY mode (Blackl.);
no blacklisting and only our PHY mode adaptation (PHY);
running both proposed mechanisms in parallel (Blackl. +
PHY). We configure the PHY mode adaptation to sustain a
minimum PDR of 99 %, as described in Sect. 6.

Adapting the PHY mode improves the PDR when the sig-
nal strength drops (shown in Figs. 12(a) and 12(b)). Chang-

ing to a more reliable PHY mode, however, introduces an ad-
ditional current consumption (ISlave) of approx. +38.9 % on
the BLE slave. We can also see in Fig. 12(c) that our PHY
mode adaptation does not adapt the PHY mode when co-
located Wi-Fi interference is introducing link-layer errors.
This shows that our blacklisting mechanism and PHY mode
adaptation mechanisms work in parallel and do not conflict.

Our PHY adaptation mechanism alone is able to sustain
a PDR of 99% while minimizing power consumption when
possible. This is shown by the similar PDR and ISlave sus-
tained by our PHY mode adaptation compared to the use of
a fixed Coded S8 PHY (Fixed S8).

Overall, we see that it is best to use both of our improve-
ments in parallel, as they do not conflict and as they can sus-
tain, together, a PDR ≥ 99% across all of our experiments.

8 Related Work
BLE reliability. Several works focus on measuring [6,
20, 30, 37] or improving [7, 23] the coexistence of BLE
with other radio technologies in the 2.4 GHz ISM band, but
none of them detects and blacklists poor channels at run-
time. Other studies have investigated the AFH algorithms
of BLE using mathematical models and simulations, but did
not make use of channel blacklisting [1, 2] or employed
hardware-specific features to detect and blacklist poor chan-
nels [31]. A few works use standard information available
in the BLE host to estimate link quality [17] and improve
timeliness by adapting connection parameters [32]. How-
ever, these approaches only counteract the effects of link-
layer loss and are not able to improve reliability. In this work,
we use link-layer metrics available in standard BLE radios to
reduce packet loss at the link layer and increase reliability.
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BLE 5 PHY modes. A few works study the impact of differ-
ent PHY modes in connection-less [3, 9, 25] and connection-
based [33] BLE systems. While the focus of these works is
on comparing the achievable performance only, our current
work investigates how to dynamically adapt the PHY mode
used by BLE connections at runtime to sustain a high relia-
bility while minimizing the power consumption.
Other low-power radio technologies. Besides works sim-
ulating Classic Bluetooth’s frequency hopping scheme [22],
most of the research on channel diversity in low-power ra-
dios has focused on IEEE 802.15.4. This body of litera-
ture, however, does not use channel blacklisting [11, 15],
statically selects a channel map [36], or periodically probes
the quality of channels [10, 16]. Other studies change the
data channel used for infrequent transmissions (1 packet/5
minutes) when the channel quality drops over long peri-
ods [29] or use machine learning to predict the link quality
of IEEE 802.15.4 channels [18]. Unlike these works, we use
link-layer information available in standard BLE radios to
promptly blacklist bad channels and adapt the PHY mode.

9 Conclusion and Future Work
The BLE specification foresees mechanisms to improve

link-layer reliability, but does not provide guidelines on
how to efficiently design and implement them. As a re-
sult, BLE devices may use proprietary solutions that pro-
vide poor link-layer reliability in real-world settings. We
propose two standard-compliant mechanisms that use exist-
ing BLE primitives to increase link-layer reliability while
minimizing power consumption, significantly outperforming
the default solutions of popular BLE platforms. Our next
steps include (i) porting the proposed improvements to other
BLE platforms, such as Samsung Galaxy S10 and iPhone 11
smartphones, as well as (ii) the dynamic adaptation of BLE’s
transmission power to further minimize power consumption.
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Institute of Technical Informatics,

Graz University of Technology, Austria

{michael.spoerk, markus.schuss, cboano, roemer}@tugraz.at

Abstract
Bluetooth Low Energy (BLE) is increasingly used for

time-critical IoT applications, where BLE-based smart ob-
jects need to exchange data with a remote server within strin-
gent end-to-end latency and reliability bounds. While ex-
isting research has investigated how to timely send packets
between pairs of BLE devices, it is still unclear how a BLE
device can sustain time-critical end-to-end communication
with a remote server, for example, hosted in the cloud.

In this paper, we tackle this problem and show how BLE
devices can autonomously measure and cope with end-to-
end network delays and loss along the path to the remote
server. To this end, we first devise an analytical model of
the communication between a BLE end-node and the cloud.
We then leverage this model to dynamically adapt the com-
munication parameters of the BLE device and sustain the
desired end-to-end dependability requirements while mini-
mizing the energy expenditure. Specifically, we design and
implement two adaptation strategies on the popular nRF52
platform, and experimentally show that they both allow to
sustain a given end-to-end reliability and a given end-to-end
latency for data transmissions from/to the BLE node, while
limiting the node’s power consumption.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—Wireless communication;
C.4.6 [Performance of Systems]: Reliability, availability,
and serviceability.

General Terms
Design, Measurement, Performance, Protocols, Reliability.

Keywords
Adaptive Protocols, Bluetooth Low Energy, End-to-end

Latency, End-to-end Reliability, Internet of Things.

1 Introduction
Bluetooth Low Energy (BLE) is one of the most popular

low-power wireless technologies in the IoT landscape, due to
its wide adoption in consumer electronics devices connected
to the Internet such as smart-phones, tablets, and laptops [5].
The resulting ease with which resource-constrained BLE-
based smart objects can interface to such devices and con-
nect to the Internet is a key enabler for the development of
attractive IoT systems based on BLE technology. Many of
these IoT systems operate in time-critical domains: exam-
ples are smart grids [8], smart cities [15], and smart health-
care [16, 22] applications, where resource-constrained BLE
nodes often need to exchange data with a cloud server within
strict end-to-end transmission reliability and latency bounds;
all of this while operating on batteries for months or years.

For example, in remote ECG monitoring systems [22] a
BLE node measures cardiac signals of a patient and sends
these measurements to a router in the same BLE subnet, as
shown in Fig. 1. The router forwards these data packets con-
taining ECG measurements via the external network path,
i.e., the Internet, to a cloud server to be processed or stored.

The data exchange between a BLE node and a remote
server is often subject to dynamic changes in the transmis-
sion delay and loss across the entire network path. In the
BLE subnet, packets may be significantly delayed due to per-
sistent or transient link-layer problems [35, 36]: this is often
due to multipath fading effects and due to the presence of
RF interference from surrounding devices (e.g., co-located
Wi-Fi access points). On the external network path, pack-
ets may be lost due to buffer congestion and CPU-intensive
tasks (e.g., routing table updates) on backbone routers. Data
transmissions can also be significantly delayed due to rout-
ing changes in the Internet backbone or due to link quality
fluctuations in the case of cellular connections [11, 13, 40].

To sustain end-to-end dependability requirements on
communication, BLE nodes need to capture and adapt to all
these changes at runtime. This requires a proper knowledge
about the delay and loss across the entire network path and
appropriate models: only this way, a BLE node can adapt its
parameters at runtime and select the right trade-off between
communication timeliness, reliability, and power efficiency.
Capturing network delay and loss. Although several
works have investigated how to capture and adapt to changes
in delay and loss across the Internet [1, 2, 11, 13, 30], the fo-
cus has always been on devices that have a high-bandwidth
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Internet connectivity and that are not constrained in their pro-
cessing capabilities or power supply.

In contrast to the studies above, a large body of research
has investigated how to sustain latency and reliability bounds
in constrained and low-power wireless networks, based for
example on IEEE 802.15.4 [14, 17, 42] or BLE [35, 36].
Building upon these works, nodes can cope with link-layer
problems in the local subnet and sustain a timely and reliable
communication while minimizing their power consumption.
The problem, however, is that none of these studies inves-
tigates how to sustain end-to-end requirements for commu-
nications that go beyond the local subnet, e.g., when a node
exchanges data with a cloud server over the Internet as illus-
trated in Fig. 1. Therefore, how BLE nodes can effectively
capture delays and loss across the entire network path re-
mains an open question. Answering the latter is fundamental
to allow the selection of suitable BLE connection parame-
ters at runtime in order to sustain end-to-end dependability
bounds while limiting a node’s energy expenditure.
Sustaining end-to-end requirements on a budget. Another
open issue is that existing analytical models of BLE’s com-
munication performance as a function of the available con-
nection parameters are unsuitable to design adaptive strate-
gies at runtime. Several models, indeed, require low-level
channel information that is not available on off-the-shelf
BLE devices [23, 29, 34]. Only the model presented by
Spörk et al. [36] is able to use standard BLE information
to monitor the timeliness of BLE communications. Un-
fortunately, however, this model is limited to transmissions
within the local BLE subnet. Furthermore, all the aforemen-
tioned models suffer from two additional limitations: (i) they
focus only on transmitting nodes and neglect how a node
can sustain dependability bounds when acting as a receiver;
(ii) they solely adapt the BLE connection interval, i.e., they
neglect the BLE slave latency, a connection parameter that
can greatly influence the behaviour of a BLE device [5].

There is hence a need for new end-to-end models that
keep the entire network path in the picture and also include
parameters such as the BLE slave latency. This way, one has
the means to properly adapt BLE communication parameters
at runtime to sustain given end-to-end latency and reliability
bounds while preserving power efficiency.
Contributions. In this work, we tackle all these challenges
and show how BLE nodes can sustain time-critical commu-
nication with a remote server on the cloud in both directions.

First, we devise a new end-to-end BLE model, incorporat-
ing a local model by Spörk et al. [36], that captures the addi-
tional latency introduced by the network path outside of the
BLE subnet. In doing so, we also let the model capture the
impact of the BLE slave latency on communication latency
as well as the interplay between the connection interval and
slave latency on the timeliness of packet receptions.

Next, we show how a BLE node can accurately and effi-
ciently estimate the communication latency across the entire
network path by using short and infrequent probing bursts.
Our estimation approach fully adheres to the end-to-end
principle of the Internet, i.e., it requires no changes to any
of the devices routing data on the network path.

BLE subnet External network path

Node Router Internet Server

Figure 1. Network topology when exchanging data be-
tween a BLE node and a cloud server over the Internet.

We further leverage the proposed model and latency esti-
mation scheme to let a node adapt its BLE communication
parameters at runtime and sustain a given end-to-end trans-
mission reliability as well as a given end-to-end latency when
communicating with a cloud server. Specifically, we propose
adaptation strategies for two different use cases: (i) the router
being constrained in its BLE radio duty cycle and (ii) the
router not having radio duty cycle constraints.

We implement our adaptation approaches on the popu-
lar Nordic Semiconductor nRF52 platform [26] using Zephyr
OS [37] and experimentally show that both approaches ef-
fectively find suitable BLE parameters at runtime that min-
imize delayed packets and power consumption, outperform-
ing other static or adaptive node configurations. In our im-
plementation we make use of IPv6-over-BLE communica-
tion as specified by the RFC 7668 [25] to exchange data
between a BLE node and cloud as illustrated in Fig. 1.
Nevertheless, our model, estimation, and adaptation ap-
proaches are independent of the used network layer on top
of the BLE connection and can directly be used for IoT ap-
plications using BLE communication based on GATT.

After introducing the necessary background informa-
tion and providing a real-world measurement of the delays
and packet loss in typical cloud-based BLE applications in
Sect. 2, this paper makes the following contributions:
• We devise a new end-to-end BLE model that captures

the end-to-end latency across the whole network path
and embeds the role of the BLE slave latency (Sect. 3).
• We show how a BLE node can autonomously estimate

the latency across the entire network path while com-
plying to the end-to-end principle of IP (Sect. 4).
• We propose two different adaptation strategies that a

node can use at runtime to sustain end-to-end require-
ments under different constraints (Sect. 5).
• We implement both approaches on the nRF52 platform

using Zephyr (Sect. 6), and we experimentally evaluate
their performance in detail (Sect. 7).

After describing related research in Sect. 8, we conclude our
paper and list future work in Sect. 9.
2 Investigating cloud-based BLE applications

We start our work by experimentally investigating the
end-to-end latency and end-to-end reliability of a BLE node
exchanging data with a cloud server on the Internet.

Fig. 1 shows the used network topology, where an IPv6-
over-BLE node device is connected to an IPv6-over-BLE
router providing Internet access. To exchange IPv6 pack-
ets, node and router establish an IPv6-over-BLE connection
according to the RFC 7668 [25]. Once this connection is es-
tablished, the router forwards the packets to the nodes within
the IPv6-over-BLE subnet or to IP devices on the Internet,
such as our server. This common network topology is used
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Table 1. Measured latencies between node and server over 7 days in our testbed for an IPv6 packet length of 128 bytes.
The table shows the median (50%), 95 percentile (95%), and maximum experienced latency (100%) for different configurations.

conn. CI SL tT X [ms] tT XBLE [ms] tRX [ms] tRXBLE [ms]
[ms] 50% 95% 100% 50% 95% 100% 50% 95% 100% 50% 95% 100%

wired 50 0 40 88 328 31 79 319 42 92 293 32 82 284
wired 50 4 39 86 732 30 75 258 41 292 1291 32 282 1281
cellular 50 0 73 1157 3026 28 69 237 67 601 2411 34 64 176
cellular 50 4 73 739 4038 27 62 283 268 531 1031 191 257 499

by popular IoT protocols, such as CoAP, MQTT, or MQTT-
SN. One major constraint for low-power IoT applications,
however, is that they usually do not use the heavyweight TCP
transport layer to reliably send data. Instead, these applica-
tions use a UDP transport layer that allows low-power con-
sumption, at the cost of packet loss on the network path [4].

To exchange data, node and router set up a BLE con-
nection, where communication happens during connection
events. During these connection events, node and router
bidirectionally exchange data until both devices have no
more data to send or until the maximum connection event
length (tCE ) has been reached. The connection interval (CI)
defines the time between two consecutive connection events.
Even if no data needs to be transmitted, node and router
exchange short mandatory keep-alive link-layer packets in
every connection event, to keep the BLE connection alive.
As these keep-alive messages cause unnecessary power con-
sumption on the BLE devices, the BLE specification foresees
the BLE slave latency (SL) parameter, which allows the node
to skip up to SL connection events.

BLE connections make use of adaptive frequency hop-
ping and autonomous packet retransmissions to ensure that
every packet that is scheduled to be transmitted over BLE
will be successfully received. These mechanisms, indeed,
lead to a reliability of 100% within the BLE subnet, as shown
in [36], although some packets may be delayed due to link-
layer effects, such as external radio interference.

The timeliness and reliability of IPv6 packets across the
external network path depend on the employed technology
(e.g., Ethernet or 4G) and cannot be controlled by the node.
To sustain an upper bound on the end-to-end latency between
the node and server, the node can only dynamically adapt its
BLE connection interval and slave latency

To investigate the real-world behavior of BLE-based IoT
applications, we perform a first experimental study.
Experimental setup. To measure latency of IPv6 pack-
ets across the whole network topology (Fig. 1), we perform
our measurements in a wireless testbed powered by D-Cube
nodes [31] located in a vacant laboratory.

We use four Nordic Semiconductor nRF52840 DK de-
vices, each running an IPv6-over-BLE node application built
on the Zephyr OS that transmits a UDP packet to the server
once every second. The server is an Amazon Web Service
(AWS) instance located in the AWS center in Frankfurt, Ger-
many, and runs a Python server echoing every UDP packet
received by a node. Both, packet to and from the server,
have an IPv6 packet length of 128 bytes and carry a unique
sequence number to match request to response. We use a
Raspberry Pi 4 (Pi4) as IPv6-over-BLE router running Rasp-
bian OS, which provides Internet access to the nodes. To

make use of the features of BLE version 5, we use another
nRF52840 DK and program it with Zephyr’s BLE HCI-USB
firmware, which allows us to use this nRF device as BLE
radio on our router. For all of our experiments, the BLE
connection uses the 2M PHY mode of BLE, all available 37
BLE data channels and does not adaptively blacklist chan-
nels, which is the default behavior of the HCI-USB firmware.

Every time a BLE node issues a UDP packet, it triggers
a GPIO event that is captured by a D-Cube device (one D-
Cube device per nRF52 node). We further log all IPv6 traf-
fic on the router to measure the communication latency of
IPv6 packets in the BLE subnet. Finally, we also log the
timestamp and source address of UDP packets received by
the server. All devices in our experiment are synchronized
to the same NTP server and, therefore, share the same notion
of time (the average clock offset between nodes and server
is -43 ± 134µs). This allows us to calculate the end-to-end
latency (tT X ) and the latency within the BLE subnet (tT XBLE )
for every packet sent from node to server. Similarly, we cal-
culate the end-to-end latency (tRX ) and the latency within the
BLE subnet (tRXBLE ) for packets sent from server to node.

To test the impact of different technologies providing In-
ternet access to our BLE subnet, our router can make use of
a wired Ethernet or a cellular 4G connection.
Preliminary results. Tab. 1 shows the distribution of the
measured latencies for different BLE connection parameters
and two different Internet connections measured over 7 days.

When comparing a wired Internet connection to a cellular
connection, we can clearly see that the used Internet connec-
tivity significantly affects the overall communication latency
in both directions. In our experiments, the maximum latency
for transmitting and receiving IPv6 packets with a cellular
connection is almost 10 times higher than a wired connec-
tion. Also the median latency in both directions is signifi-
cantly higher for a cellular than for a wired connection. This
shows that a node cannot simply assume a fixed delay across
the external network path to sustain latency bounds.

When investigating different BLE connection parameters,
the data in Tab. 1 shows that the SL parameter does not sig-
nificantly affect the latency in the BLE subnet of packets sent
by the node (tT XBLE ). As expected, the SL, however, signif-
icantly affects the latency of packets received by the node
(tRXBLE ). The reason for that is the node skipping up to SL
connection events when it has no data to transmit, which
means that the router may need to wait up to SL connection
events for the node to wake up and receive packets1.

During our experiment, the wired Internet connection ex-
perienced an average end-to-end transmission reliability of

1The actual slave latency behavior depends on the node’s BLE link-layer
implementation and may differ between different BLE chip vendors.
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99.35%, with at least 97% of any 100 subsequent transmis-
sions successfully sent. The cellular connection sustained an
average end-to-end transmission reliability of 97.65% and a
minimum reliability of 92% for any 100 transmissions. Sim-
ilar to [36], no packet was lost within the BLE subnet.

Based on the experimental data, we can see that the end-
to-end latency and reliability of packets sent by a BLE node
depend on (i) the used BLE connection parameters and (ii)
the behavior of the external network path. To sustain a given
end-to-end reliability and a given end-to-end latency while
limiting unnecessary power consumption, a node needs to
dynamically adapt its BLE connection parameters to changes
in the overall network path. To find the most suitable BLE
connection parameters, however, new BLE models are re-
quired that, in addition to capturing the effects of both the
connection interval and slave latency, need to cope with the
behavior of the entire network path.

One approach to sustain given end-to-end latency bounds
would be to use application-level round-trip time (RTT) mea-
surements on the node to adapt the BLE connection param-
eters. The main problem, however, is that existing applica-
tion traffic cannot be used to accurately estimate the one-way
communication latencies tT X or tRX . During normal opera-
tion, the BLE node uses a BLE slave latency greater than 0,
which allows the node to limit power consumption while sus-
taining given latency bounds. A value SL > 0 leads to packet
receptions being unpredictably delayed, which significantly
affects the accuracy of individual tT X and tRX estimates.

In this work, we follow another approach, where we first
devise new end-to-end models that captures the delay across
the entire network path (Sect. 3) and show how a BLE node
can use infrequent probing bursts to accurately estimate the
network latency across the entire network path in Sect. 4. In
Sect. 5, we combine our model and network latency estima-
tion to sustain given end-to-end dependability requirements.

3 Modeling BLE communication
In this section, we devise a new end-to-end model, which

incorporates the local BLE model from [36], to fit the use
case shown in Fig. 1. Towards this goal, we do not only ex-
tend the timeliness model to account for delays across the In-
ternet, but also investigate how the BLE connection interval
and slave latency affect timeliness when the node transmits
(Sect. 3.1) and receives data (Sect. 3.2).
3.1 Transmitting IPv6-over-BLE data

First, we model the end-to-end latency (tT X ) for a node
transmitting a data packet to a cloud server.

Fig. 2 shows two exemplary transmissions from the BLE
node via a router to the server. In both examples, the applica-
tion on the BLE node (Node App.) issues a data transmission
(D) between connection event N0 and N1. When no link-
layer errors occur (shown by Fig. 2(a)), the BLE link-layer
(LL) of the node and router successfully exchange the data
in connection event N1. In case there are link-layer errors,
i.e., due to external Wi-Fi interference (shown in Fig. 2(b)
in connection event N1), the link-layer of the BLE node re-
transmits the packet until successfully received by the router.
After successfully receiving the packet, the router forwards
the packet via the Internet to the server, which takes tT XNET .
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(a) No link-layer errors during BLE data transmission.
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(b) One link-layer error during BLE data transmission.
Figure 2. Timing for a BLE node transmitting a data
packet (D) to a cloud server over the Internet.

In these examples, the packet length (DT X ) is smaller than
the maximum packet length that can be sent during a single
connection event (FT X ) and, therefore, only one successful
connection event is used to transmit the packet. If DT X >
FT X , the packet is split into multiple data fragments, where
every fragment requires its own successful connection event.

As Fig. 2 shows, the end-to-end latency (tT X ) for sending
a data packet from node to server consists of:

tT X = tT XBLE + tT XNET , (1)

where tT XBLE is the transmission latency of the packet be-
tween node and router and tT XNET is the transmission latency
of the packet from router to server. The tT XNET delay de-
pends on the used Internet connection and will be estimated
in Sect. 4. We model the tT XBLE delay as shown in [36] as:

tT XBLE =

( dDT X/FT X e
∑
f=1

nCE f ·CI

)
+ tCE , (2)

where DT X is the length of the sent packet and FT X is the
maximum packet length that can be sent from node to router
within a single BLE connection event. nCE f is the number of
connection events necessary to successfully transmit an indi-
vidual packet or fragment, capturing any link-layer retrans-
missions. CI represents the BLE connection interval, and tCE
is the maximum duration of a single connection event.

When combining Eq. 1 with Eq. 2, we can calculate the
end-to-end transmission latency tT X as:

tT X =

( dDT X/FT X e
∑
f=1

nCE f ·CI

)
+ tCE + tT XNET . (3)

To calculate the upper bound on the end-to-end transmis-
sion latency (tT XMAX ), we assume that every individual packet
fragment is sent with nCE f = nCEMAX , i.e., every link-layer
transmission experiences the same link-layer error proba-
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bility. Furthermore, we assume that the packet experiences
the maximum current delay across the external network path
(tT XNET = tNETMAX ), which we discuss in Sect. 4. Applying
these assumptions to Eq. 3, we derive that:

tT XMAX ≥ nCEMAX ·
⌈

DT X

FT X

⌉
·CI + tCE + tNETMAX . (4)

Note that the slave latency (SL) does not impact tT X and
tT XMAX . Indeed, the slave latency allows a BLE node to skip
connection events if no data has to be transmitted. If the
node, however, has data to transmit (as it is the case here),
the node simply does not make use of the slave latency.
3.2 Receiving IPv6-over-BLE data

Next, we model the end-to-end latency (tRX ) for a node
receiving a data packet from the server.

Fig. 3 shows two scenarios involving a packet sent from
the server to the BLE node. In both examples, the server is-
sues a data transmission between connection event N0 and
N1 and the router application (Router App.) successfully
receives the packet between event N1 and N2, which takes
tRXNET . Next, the router forwards the packet to the node and
therefore issues a transmission on its link layer (Router LL).
In connection event N2, the router LL tries to send the packet
over BLE to the node, but the node makes use of its con-
figured slave latency (SL = 2) and does not wake up during
event N2 to receive any data. The router LL retransmits the
packet to the node until it is successfully received. In the
example in Fig. 3(a), this happens during connection event
N3. In Fig. 3(b), router and node wake up during connection
event N3, but due to a link-layer problem (e.g., external radio
interference), the packet is not successfully received by the
node. As the node has not received a valid BLE link-layer
packet from the router, it follows the behavior required by
the BLE specification [5] and wakes up during every sub-
sequent connection event until a valid BLE packet from the
router is received. In our example (Fig. 3(b)) this happens
during event N4, after which the packet from the server is
successfully received by the application on the BLE node.

In both examples, the packet length (DRX ) is smaller than
the maximum packet length that can be received during a
single connection event (FRX ). If DRX > FRX , multiple suc-
cessful connection events are necessary to send the packet
from router to node. In such a case, the node is informed
about more data on the router via the MD-field in the BLE
link-layer header and does not make use of its slave latency
until all data from the router is successfully received.

As shown in Fig. 3, the end-to-end latency (tRX ) for a node
receiving a packet from a remote server consists of:

tRX = tRXNET + tRXBLE , (5)

where tRXNET is the latency of the packet between server and
router and tRXBLE is the latency of the packet from router to
node. Similar to Sect. 3.1, tRXNET is dependent on the qual-
ity of the Internet connection and will be studied in Sect. 4.
tRXBLE can be modeled as:

tRXBLE =

( dDRX/FRX e
∑
f=1

nCE f ·CI

)
+ tCE + tSL, (6)
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Figure 3. Timing for a BLE node receiving a data packet
(D) from a cloud server over the Internet.

where DRX is the length of the data packet and FRX is the
maximum packet length that can be received by the node
within a single BLE connection event. nCE f is the num-
ber of connection events necessary to successfully transmit
an individual packet or fragment (capturing any necessary
link-layer retransmissions), CI is the BLE connection inter-
val, and tCE is the maximum duration of a single connection
event. tSL measures the additional time the router needs to
wait until the node is waking up after skipping up to SL con-
nection events, which has a maximum value of:

tSLMAX =CI ·SL. (7)

When combining Eq. 5 with Eq. 6, we can calculate the
overall end-to-end reception latency tRX as:

tRX = tRXNET +

( dDRX/FRX e
∑
f=1

nCE f ·CI

)
+ tCE + tSL. (8)

Similar to Sect. 3.1, we adapt Eq. 8 to calculate the upper
bound on the end-to-end reception latency (tRXMAX ) by using
nCE f = nCEMAX , tRXNET = tNETMAX , and Eq. 7 to obtain:

tRXMAX ≥ (nCEMAX ·
⌈

DRX

FRX

⌉
+SL) ·CI + tCE + tNETMAX . (9)

Compared to Sect. 3.1, we can see that the slave latency
(SL) impacts tSL and hence the time it takes for a node to
receive a packet from the server. Using a value of SL > 0,
the BLE node skips connection events to minimize power
consumption when it has no data to transmit. This, however,
means that the router may need to wait up to SL connection
events until the node wakes up to receive data.

The models presented in Sect. 3.1 and 3.2 allow us to cal-
culate the latency for transmitting and receiving data packets
on the BLE node. One critical aspect missing, however, is
the delay that is caused by the network path outside the BLE
subnet (tNET ), which we investigate next.
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4 Estimating Network Latency
In this section, we discuss how a BLE node can estimate

tNET in a way that is fully compliant to the end-to-end prin-
ciple of IP. Following this principle, our tNET estimation ap-
proach allows nodes to estimate tNET without requiring any
changes to devices on the network path, such as the router.
Therefore, our estimation approach can easily be used on any
node and works with any IPv6-over-BLE router that adheres
to the specification in [25]. Approaches violating the IP end-
to-end principle, i.e., requiring changes to the routers in the
network, lead to huge setup and deployment costs and are
therefore seldomly used in practice [41].

Our tNET estimation is fully technology-agnostic and esti-
mates tNET independently of the applied technology to con-
nect to the Internet. Furthermore, our estimation approach
can also be used to estimate tNET in applications of any net-
work scope, e.g., applications spanning only a local Intranet.

While we use our estimation approach to estimate the
maximum latency across the entire network path, our ap-
proach may also be used to calculate the average latency in
order to synchronize a node’s clock, e.g., via NTP.

The main problem in estimating network latency in our
use case, however, is that existing application traffic cannot
be used to accurately estimate tNET . During normal oper-
ation, the BLE node uses a long BLE connection interval
(CI) and a BLE slave latency (SL) greater than 0 that allow
the node to sustain end-to-end latency bounds while limiting
power consumption, but cause two problems while estimat-
ing tNET . As described in Sect. 3.2, SL> 0 leads to packet re-
ceptions being unpredictably delayed, affecting the accuracy
of individual tNET estimates. Furthermore, a large CI value
leads to a coarse sampling resolution of the application-level
round trip time and therefore leads to coarse tNET estimates.
4.1 Probing network latency

To estimate tNET on a node, we periodically perform short
probing bursts, where we exchange short probe and corre-
sponding acknowledgment packets between node and server.

At the start of every probing burst, the node updates its
BLE connection parameter to the smallest possible CI and
SL = 02. With the smallest possible CI, the node is able to
sample tNET with the lowest possible sampling resolution.
By using SL = 0 during probing, we eliminate any unpre-
dictable delay caused by SL during reception (as captured by
tSL in Eq. 8) that would impact our estimation accuracy.

After the BLE connection parameters for probing are
successfully set, the node transmits a short probing packet
to the server, to which the server responds with a short
acknowledgment packet. The node issues a new probing
packet as soon as the previous probing packet has been ac-
knowledged by the server. These probe packets can be or-
dinary application data packets or also distinct IPv6-based
packets solely used for probing, such as ICMPv6 echo re-
quests and responses. To get the most accurate tNET esti-
mations, however, probe and acknowledgment packets need
to fit within a single connection event, i.e., DT X ≤ FT X and
DRX ≤ FRX . When node and server have exchanged LProbe

2This is done by using the standardized BLE connection parameter ne-
gotiation process defined by the BLE specification [5].

probe/acknowledgment packets, the node reverts the BLE
connection parameters to the settings used before probing
and continues with its normal behavior.

For every exchanged probe/acknowledgment pair, the
BLE node measures the round trip time (tRT T ) and the BLE
transmission time (tT XBLE ). tRT T is measured as the time be-
tween the node application issuing the probe transmission
and the node successfully receiving the corresponding ac-
knowledgment. To measure tT XBLE , the BLE node monitors
the communication on the standardized BLE Host Controller
Interface (HCI) of the BLE controller, as shown by [36]. By
measuring the time between the node application issuing the
BLE data transmission and the BLE controller actually free-
ing the corresponding data buffer, the node application is
able to measure tT XBLE in a standard-compliant way.

The measured time tRT T can be modeled as:

tRT T = tProbe + tACK , (10)

where tProbe is the end-to-end transmission latency of a probe
packet from node to server and tACK is the end-to-end trans-
mission latency of the acknowledgment from server to node.
By using Eq. 1 and Eq. 5 for modeling tProbe and tACK , re-
spectively, we get:

tRT T = tT XBLE + tT XNET + tRXNET + tRXBLE . (11)

One simplification for our estimation approach is that we
assume the delay across the Internet is symmetric and call
this delay tNET , i.e., tNET = tT XNET = tRXNET , which gives us:

tRT T = tT XBLE +2 · tNET + tRXBLE . (12)

The network delay tNET can thereby be calculated as:

tNET =
tRT T − tT XBLE − tRXBLE

2
. (13)

Although we assume a symmetric Internet delay, our tNET es-
timation approach can also accurately capture the actual one-
way network latency of asymmetric Internet connections,
such as 4G communication, as we show in Sect. 4.3.

While the node can measure tRT T and tT XBLE for every
probe, tRXBLE cannot be measured by monitoring HCI com-
munication, but needs to be estimated by using the infor-
mation available on the BLE node. For our estimation ap-
proach, we assume that tRXBLE = tT XBLE , as both probing and
acknowledgment packets fit within one single connection
event and tT XBLE provides us with the most recent link-layer
information. Furthermore, we assume that receiving a packet
from the router takes at least CI, which is the smallest time
unit we can measure with our probing approach, resulting in:

tRXBLE = MAX(tT XBLE ,CI). (14)

4.2 Estimating maximum network latency
After measuring the network latency (tNET ) of individ-

ual packet exchanges during probing, we use these measure-
ments to estimate the maximum network latency (tNETMAX ) of
future packet exchanges. With tNETMAX estimations and our
proposed model in Sect. 3, we are able to sustain end-to-end
communication requirements, as we show in Sect. 5.

Fortunately, estimating upper bounds on transmissions on
the Internet is a well-researched topic [11, 19, 20]. While
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most recent research uses sophisticated statistical analy-
sis [11, 30], only a subset of these studies propose solu-
tions that are suitable for devices that are constrained in
their processing capabilities and power supply, such as BLE
nodes. For our estimation, we adapt the efficient and well-
established round-trip time estimation approach of TCP as
specified by Jacobson [18] and standardized in [28].

Instead of using an exponentially weighted moving aver-
age as proposed in [28], we store all individual tNET mea-
surements during a probe burst and calculate their average
(tNETAV G) and variance (tNETVAR ) at the end of every burst.
Using the average and variance, we can calculate tNETMAX as:

tNETMAX = tNETAV G +K · tNETVAR , (15)

where we use a fixed K = 4 as specified in [28].

4.3 Choosing a probe burst length
We study next the most suitable probe burst length

(LProbe) that provides an accurate tNETMAX estimation while
limiting unnecessary energy consumption on the BLE node,
caused by probing. We do this empirically by letting an
nrf52-based BLE node exchange probe/acknowledgment
packets once every second with a server in four different en-
vironments for eight hours per environments.
Experimental environments. For our measurements, we
use the following four different experimental environments:
Wired & No Interf. In this scenario, we use a wired Internet
connection on the router with very low variability in combi-
nation with no Wi-Fi interference in the BLE subnet.
Wired & Wi-Fi Interf. This scenario uses the same wired In-
ternet connection as above. To generate link-layer problems
and, therefore, delays in the BLE subnet, we introduce con-
tinuous Wi-Fi interference on two different Wi-Fi channels
(sending 1500 bytes of Wi-Fi data every 10 ms with a TX
power of 50 mW) using two different co-located Rasperry Pi
3 devices in our testbed running Jamlab-NG [32].
Cellular & No Interf. In this scenario, we use a 4G connec-
tion to connect our router to the Internet. Compared to the
wired Internet connection, the 4G connection experiences
longer and more variable tNET values, as we show in Sect. 2.
This scenario does not introduce any Wi-Fi interference.
Cellular & Wi-Fi Interf. This scenario uses the 4G Internet
connection and introduces continuous Wi-Fi interference in
the BLE subnet. This leads to delays in the BLE subnet,
caused by link-layer retransmissions due to Wi-Fi, and on
the external network path, caused by the cellular connection.

To evaluate different probing settings, we measure the
one-way tNET delay of every sent probe using our NTP-
synchronized router and cloud server, as described in Sect. 2.
Additionally, the node estimates a tNET value, as described in
Sect. 4.1, for every exchanged probe/acknowledgment pair.

We step through the recorded tNET estimates of the node
and use Eq. 15 to calculate a new tNETMAX after every tNET es-
timate. For every new tNETMAX value, we check how many of
the future tNET measurements, i.e., the actual one-way tNET
measurements, exceed the tNETMAX estimate and are therefore
underestimated. For our evaluation we use a very conserva-
tive prediction window, i.e., the probing interval (IProbe), of
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Figure 4. Percentage of underestimated tNET values (top),
power consumption PProbe (middle), and cost α (bottom)
for different LProbe values in four different environments.

1000 seconds. With this configuration, a node initiates a new
probing burst every 1000 seconds to estimate tNET .

Fig. 4 shows the performance of different LProbe values
in four different environments. The top of Fig. 4 shows the
average number of underestimated future tNET values. For
example, when using a cellular Internet connection and no
interference, LProbe = 10 results in approximately 7% of all
future tNET values being underestimated. PProbe shows the
calculated average power consumption of a node for probing
with different LProbe and a IProbe = 1000s. The bottom of
Fig. 4 shows the cost α for every LProbe as the number of
underestimated tNET predictions multiplied by PProbe.

Fig. 4 shows that a short LProbe = 10 has the lowest cost
α in all four environments, i.e., it provides the most suit-
able tNET estimation of future packet exchanges while limit-
ing unnecessary energy consumption on the BLE node. For
wired Internet connectivity, even LProbe = 5 would provide
an accurate tNETMAX . For cellular Internet connectivity, a
larger LProbe would slightly improve the tNETMAX estimation,
at the cost of a higher average power draw on the BLE node.

Next, we investigate the performance of our tNET estima-
tion for different IProbe values and LProbe = 10. We reuse
the recorded data to calculate the percentage of underesti-
mated tNET values, the average power consumption for prob-
ing (PProbe), and the cost α of different probing intervals.

Fig. 5 shows that IProbe = 1000s performs best in all four
experimental environments, as it has the lowest cost α. In
our setting, a smaller IProbe does not significantly reduce the
percentage of underestimated tNET values. Using a smaller
IProbe, however, significantly increases the power consumed
by the node for probing tNET .

IoT applications that experience vast and sudden changes
in delay across the Internet, e.g., a 4G-based mobile router
experiences link quality degradation and needs to change to
a 3G backhaul, may use a shorter probe interval (IProbe) at
the cost of a higher power consumption of the BLE node.
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5 Sustaining End-to-End Requirements
In this section, we discuss how a BLE node can use our

model (Sect. 3) and tNET estimations (Sect. 4) to sustain a
given end-to-end latency and a given end-to-end reliability,
while minimizing its power consumption. Therefore, we in-
vestigate how a node can cope with network loss (Sect. 5.1)
and sustain end-to-end requirements when connected to a
router with (Sect. 5.2) or without radio duty cycle constraints
(Sect. 5.3). We also discuss how a node can sustain bounds
on packet transmissions and receptions (Sect. 5.4).
5.1 Sustaining Reliability

First, we investigate how a BLE node can sustain a given
transmission reliability (r̂MIN) by dynamically adapting the
number of necessary transmissions of application packets
based on the current transmission reliability (rNET ) over the
network path. As shown in Sect. 2, no packets are dropped
within the BLE subnet, due to the autonomous packet re-
transmission and flow control of the BLE link layer. Since
we use the light-weight UDP transport layer, as most con-
strained IoT applications do [4], packets may be dropped on
the Internet. To cope with this loss, we may need to send
additional data packets to sustain our given reliability.
Estimating transmission reliability. To estimate the cur-
rent reliability across the network (rNET ), we use a moving
average filter with a window length WLOSS on ordinary data
transmissions. When we receive an acknowledgment for an
application data packet within a timeout tTimeout , we count
this transmission as successful (rPKT = 1). Otherwise, we
assume the transmission has failed (rPKT = 0). After every
transmission, the current rNET is calculated as:

rNET =
1

WLOSS

WLOSS

∑
j=1

rPKT ( j). (16)

Adapting transmission attempts. By knowing the current
rNET value of the network path, we can dynamically adapt

the number of application transmission attempts necessary to
achieve the given minimum transmission reliability (r̂MIN).
Compared to other Internet traffic, our data and acknowledg-
ment packets are short and rather infrequent, which means
that the BLE nodes will hardly cause congestion in the Inter-
net path just because of few additional packets.

Similar to other research [39, 40], we assume that packet
loss over the network path is independent and identically dis-
tributed with a success rate of rNET , which means we can
model it with the binomial distribution as:

P(X = k) =
(

n
k

)
rk

T X (1− rNET )
n−k, (17)

where P(X = k) is the probability that exactly k out of n
transmission attempts are successful.

In our case, we need at least one transmission attempt to
have a successful packet exchange between node and server.
The end-to-end reliability r̂MIN can be calculated as:

r̂MIN = P(X ≥ 1) = 1−P(X = 0). (18)

By using Eq. 17 and
(n

0

)
= 1, r̂MIN can be calculated as:

r̂MIN = 1− (1− rNET )
n. (19)

For a given r̂MIN < 1 and an estimated rNET , we calculate
the number of necessary transmission attempts (NT X ) as:

NT X = n =

{⌈
log(1−r̂MIN)
log(1−rNET )

⌉
if rNET < 1

1 if rNET = 1
(20)

By sending NT X data packet attempts, we can sustain the
given application reliability (r̂MIN). Next, we investigate the
necessary timing of the NT X transmissions so that the appli-
cation also sustains a given maximum end-to-end latency.
5.2 Sustaining Latency: Adapting CI & SL

Next, we investigate how a BLE node can sustain a given
upper end-to-end latency bound when connected to a router
that needs to limit its BLE radio duty cycle.

Some router devices do not have a continuous power sup-
ply (e.g., smartphones) and/or need to sustain a BLE con-
nection with a large number of BLE nodes simultaneously.
In such cases, it it necessary that a BLE node requires as lit-
tle BLE radio time on the router as possible. If BLE nodes
would require huge portions of the BLE radio duty cycle of
the router, e.g., because the router needs to check every 10 ms
if the node has data to send, the node would drain the router’s
battery or would limit the number of simultaneous BLE con-
nections that can be offered on the router.

In these scenarios, a BLE node needs to adapt the BLE
connection interval (CI) and the BLE slave latency (SL) to
sustain its latency bounds while limiting its power draw and
the radio duty cycle on the router.
5.2.1 Transmitting Data

We show how a BLE node can choose suitable CI and
SL values to transmit data with a given end-to-end latency
(̂tT XMAX ) and a given end-to-end reliability (r̂MIN) to a server.

From Sect. 5.1, we know that we need to transmit NT X
application packets within t̂T XMAX to sustain r̂MIN . Therefore,
we split t̂T XMAX into NT X equal time slots. In each of these
time slots one transmission attempt is initiated.
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We can now use Eq. 4 to calculate the bound on the con-
nection interval (CI) that allows us to sustain the latency re-
quirements for transmitting packets from node to server as:

CI ≤ t̂T XMAX /NT X − tNETMAX − tCE

nCEMAX · dDT X/FT Xe
. (21)

To minimize the power consumption on the BLE node,
we can also choose its BLE slave latency (SL) as:

SL = nCEMAX · dDT X/FT Xe−1. (22)

This allows the node to skip unnecessary connection events,
where only mandatory keep-alives would be exchanged.
5.2.2 Receiving Data

In this section, we show how a BLE node can choose suit-
able CI and SL values to receive data within a given end-to-
end latency (̂tRXMAX ) and a given end-to-end reliability (r̂MIN)
from a server. In this case, the server needs to account for any
loss over the Internet and adapt its transmission attempts, as
discussed in Sect. 5.1. The node gets NRX from the server,
after it has calculated the necessary transmission attempts.

Using Eq. 9, we can calculate the bound on CI that allows
to sustain the given end-to-end latency as:

CI ≤ t̂RXMAX /NRX − tNETMAX − tCE

nCEMAX · dDRX/FRXe+SL
. (23)

Furthermore, we choose SL = 0 for this scenario. This
allows the node to sustain a given upper bound on the recep-
tion latency while limiting unnecessary BLE radio time on
the router due to skipped connection event.
5.3 Sustaining Latency: Adapting SL Only

In contrast to Sect. 5.2, we next investigate how a BLE
node can sustain a given upper end-to-end latency bound on
transmitting or receiving messages when the router has no
constraints on its BLE radio duty cycle (i.e., the router is not
constrained in its power consumption) and scalability (i.e.,
the number of connected BLE devices) is not an issue.

In this scenario, the router provides the BLE node with the
smallest possible BLE connection interval (CI) during BLE
connection setup that the router can sustain. The BLE node
uses the provided CI and only adapts the BLE slave latency
(SL) according to its application latency requirements.
5.3.1 Transmitting Data

Similar to Sect. 5.2.1, the BLE node first calculates the
number of necessary data transmission attempts (NT X ) to
sustain the given application reliability (r̂MIN).

In contrast to Sect. 5.2, where the node needs to calculate
a suitable CI, the BLE node already uses the fastest CI possi-
ble and only needs to adapt SL to conserve power by limiting
unnecessary empty connection events. To limit these unnec-
essary connection events, we set SL as:

SL = dIT X/CIe−1, (24)

where IT X is the interval at which the application is issuing
packet transmissions and CI is the used BLE connection in-
terval. dIT X/CIe measures the maximum number of connec-
tion events between two data packet transmissions.

Using this SL, the node only needs to wake up when it has
data to transmit. During the remaining connection events, the
node sleeps for SL events to minimize power draw.

5.3.2 Receiving Data
Similar to the data transmission case, the BLE node uses

the CI value provided by the router and only adapts the SL
according to the end-to-end timing requirements for receiv-
ing packets from the server. To sustain the given end-to-end
reception latency, we use Eq. 9 and solve for SL as:

SL≤ t̂RXMAX /NRX − tNETMAX − tCE

CI
−nCEMAX ·

⌈
DRX

FRX

⌉
. (25)

Using such a SL allows the node to skip most BLE con-
nection events while sustaining the desired latency bound.
5.4 Discussion

To sustain end-to-end latency bounds on transmitting and
receiving packets simultaneously, a node independently cal-
culates suitable parameters for transmitting (CIT X and SLT X )
and receiving (CIRX and SLRX ) using the formulas above.

To ensure that both end-to-end latency bounds are sus-
tained, the node uses a value of CI = MIN(CIT X ,CIRX ) and
SL = MIN(SLT X ,SLRX ) as its BLE connection parameters.

6 Implementation
In this section, we present the implementation of our

proposed adaptation strategies on the Nordic Semiconduc-
tor nRF52840 DK [26]. This platform uses an ARM Cortex-
M4F CPU, comes with 1024 kB of flash and 256kB of RAM,
and embeds a radio supporting BLE communication up to
version 5. While we use the nRF52840 platform, our imple-
mentation also runs on all nRF52 platform variants.

For our adaptation mechanisms, we use only fully stan-
dardized BLE functionality, which means that our imple-
mentation can be easily ported to other hardware platforms
that support BLE version 4.1 and above, such as the Texas
Instruments CC26xx platform.

We use the Zephyr OS [37] for our implementation, be-
cause this OS already includes a BLE and IPv6-over-BLE
communication stack fully compliant to the BLE specifica-
tion and uses the standardized HCI to exchange data between
the BLE controller and host. We extend Zephyr’s IPv6-over-
BLE application on the node, which is located on the BLE
host, by our proposed adaptation mechanisms. Our node ap-
plication waits for the router to initiate an IPv6-over-BLE
connection. After the connection is initiated, the node trans-
mits a UDP packet with an IPv6 packet length of 128 bytes
to the server, which runs a Python UDP server application in
an Amazon Web Service (AWS) instance in Frankfurt. As
soon as the node receives the first valid server acknowledg-
ment, it starts to probe tNETMAX using a probe burst length of
LProbe = 10. After a first tNETMAX estimation is available, the
node calculates the most suitable CI and SL configuration, as
described in Sect. 5, and configures these values by sending
a BLE LL CONNECTION UPDATE REQUEST to the router.

For both adaptation approaches, we use an ACK timeout
tTimeout = 2000ms and a probing interval IProbe = 1000s. We
monitor the nCE values of the underlying BLE connection
by following the approach presented in [36]. Therefore, we
add nCE estimation on the BLE host in the HCI driver layer
(hci core) and monitor the HCI ACL Data Packet com-
mand and HCI Number of Completed Packets event to
get tT XBLE and nCE f for every transmitted application packet.
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Table 2. Delayed packet and maximum number of sub-
sequently delayed packets (max. delays) of the different
node configurations under heavy Wi-Fi interference.

Node config. delayed [%] max. delays
CI = 7.5 ms & SL = 0 0.00 ± 0.00 0
Adapt SL only 0.00 ± 0.00 0
Adapt CI & SL 0.61 ± 0.22 2
CI = 1000 ms & SL = 0 50.64 ± 2.64 25

Whenever a new nCE f value is available, the node application
is notified via a callback and can update the BLE connection
parameters according to Sect. 5.

The current nCEMAX value of the BLE connection is cal-
culated via a moving maximum filter with a window length
of 100 most recent nCE f measurements, as described in [36].
We further use a lower bound of nCEMAX = 2 in our imple-
mentation, which means that we slightly overestimate loss
over the BLE connection, even when no link-layer errors
happen during recent packet transmissions.

Our BLE connections do not make use of BLE data chan-
nel blacklisting and use the 2M PHY Mode of BLE.
7 Evaluation

We evaluate our proposed adaptation strategies experi-
mentally. We start by evaluating the detailed behavior of
both proposed approaches, which we call Adapt CI & SL
(Sect. 5.2) and Adapt SL only (Sect. 5.3). We do so in the
presence of dynamic changes on the network path (Sect. 7.1)
and further provide a comparison with other BLE node con-
figurations (Sect. 7.2). Specifically, we compare our ap-
proaches against a node using the fastest possible static BLE
connection parameters (CI = 7.5ms & SL = 0) and a node
using static and power efficient BLE connection parameters
(CI = 1000ms & SL = 0).
7.1 Systematic Evaluation

To show how our proposed solutions can cope with dy-
namic changes in the BLE subnet and on the external net-
work path, we focus on a node transmitting packets to the
server using a wired Internet connection. All BLE nodes are
configured to sustain a r̂MIN = 99% and a t̂T XMAX = 1000ms.
7.1.1 Changes in the BLE subnet

First, we investigate how a node can adapt to sudden
changes (e.g., Wi-Fi interference) in the local BLE subnet.
Setup. We use the experimental setup described in Sect. 2
and start the experiment by setting up the connection be-
tween node and server and wait for 60 s until all initial adap-
tations are done. After this initial phase, we introduce heavy
and continuous Wi-Fi interference on two different Wi-Fi
channels (sending 1500 bytes of Wi-Fi data every 10 ms with
a TX power of 50 mW) using two different Rasperry Pi 3 de-
vices in our testbed running Jamlab-NG [32].
Results. Tab. 2 shows the number of delayed UDP packets
(delayed) for each of the four different node configurations
over the 10 min after the Wi-Fi jamming was started, across
5 runs for every node configuration. Furthermore, the table
shows the maximum number of subsequently delayed pack-
ets (max. delays) across all test runs for every configuration.

We can see that both of our proposed adaptation ap-
proaches (Adapt SL only and Adapt CI & SL) are able to
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Figure 6. Measured end-to-end application reliability for
different node configurations and configured packet loss.

effectively cope with link-layer errors in the BLE subnet.
While the Adapt SL only approach results in no end-to-end
packet delays, also the Adapt CI & SL approach results in
below 1% of all packet transmissions being delayed.
7.1.2 Changes in network loss

Next, we evaluate the performance of our adaptation ap-
proaches when the transmission reliability of the external
network path (rNET ) changes.
Setup. We use the setup from Sect. 2 to establish a connec-
tion between node and server and wait for 60 s until all initial
adaptation is done. Next, we lower rNET by either 1, 2, 5, 10,
15, or 20% and measure the resulting end-to-end application
reliability, i.e., how many node packets are successfully re-
ceived within t̂T XMAX , for 600 s. To reproducibly lower rNET ,
we use the standard Traffic Control (tc) tool with its Net-
work Emulator (netem), which are both part of Linux distri-
butions. We use tc on the all outgoing IPv6 packets on the
router and the AWS server to mimic symmetric network loss.
Results. Fig. 6 shows the average transmission reliability
of our application packets for three different node configura-
tions across 5 experimental runs per configuration. We can
see that both of our adaptive approaches successfully sustain
the configured r̂MIN = 99%, by increasing the transmission
attempts sent for every application data packet.
7.2 Comparison

We next investigate how our approaches perform in com-
parison to other node configurations.
Setup. Again, we use our testbed setup (see Sect. 2) to mea-
sure end-to-end latency and power consumption of nodes.
We program a node with one of the different node configu-
rations, setup the communication between node and server,
and initially wait 60 s before we start our data collection.

To measure the performance of the different node con-
figurations, we measure the number of application packets
that exceed the specified latency bound (delayed pkts.). We
further measure how the different node configurations affect
the BLE radio duty cycle of the router (RDCRouter) by mon-
itoring GPIO events of our router’s USB-BLE radio, which
triggers a GPIO event whenever the BLE radio is enabled.
To investigate the power efficiency of the different node con-
figurations, we measure the current consumption of the BLE
node (INode) using D-Cube [31]. For this experiments, all log
messages and unused peripheral devices on the BLE node are
disabled to minimize the overall power consumption.

In addition to the two static and two adaptive node con-
figurations, we also measure the performance of the adap-
tation approach presented in [36] in this experiment. This
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Figure 7. Performance of fixed and adaptive node config-
urations for sustaining t̂T XMAX = 1000ms on transmitting
packets with a length of 128 bytes to a cloud server.

approach, which we call NCE only, only reacts to changes
in the BLE subnet and does not account for any network de-
lay. As the NCE only approach only sustains transmission
bounds, it is not included in our packet reception experiment.
Results. Fig. 7 shows the performance of four differ-
ent node configurations when the node tries to sustain a
t̂T XMAX = 1000ms in the four different experimental envi-
ronments from Sect. 4.3. Every experimental run was re-
peated 5 times. We can clearly see that our Adapt CI & SL
approach results in at most 0.1% of transmission being de-
layed, while also limiting the router’s radio duty cycle and
the slaves current consumption. If we follow the Adapt SL
only approach, no transmissions are delayed. This, how-
ever, comes with the cost of at least a factor 10 increase of
the RDC on the router. Furthermore, we can see that both of
our approaches also significantly outperform the NCE only
approach in sustaining t̂T XMAX , by at least 100%.

Similarly, Fig. 8 shows the performance of the differ-
ent node configurations when the node tries to sustain a
t̂RXMAX = 1000ms. Also in this setting, we can clearly see that
both of our adaptation approaches result in at most 1.4% of
packets receptions being delayed, while limiting the power
consumption of the BLE node. Similar to Fig. 7, the Adapt
SL only approach results in less delayed packets than the
Adapt CI & SL approach, at the cost of a higher RDCRouter.

8 Related Work
Cloud-based BLE applications. There exists a vast number
of BLE-based applications that communicate with a cloud
server in time-critical domains, such as smart-grid [8], smart
city [15], or smart health applications [3, 16, 22, 38]. None
of these works, however, adapt their communication to delay
or loss in the BLE connection or the remaining network path.

Contrary to these works, our paper shows how BLE-
based IoT applications can sustain end-to-end reliability and
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Figure 8. Performance of fixed and adaptive node con-
figurations for sustaining t̂RXMAX = 1000ms on receiving
packets with a length of 128 bytes from a cloud server.

latency bounds for communication between nodes and a
server, while limiting the power draw of the BLE devices.
BLE Modeling. Existing BLE timeliness models cannot be
used on off-the-shelf BLE devices, as they require BLE link-
layer information, such as CRC error count or bit error rate,
which are not available to BLE applications [23, 29, 34].
Only a few works [27, 36] make use of information that is
available on every standard BLE device to estimate and con-
trol the transmission delay on a BLE connection. The major
problem with these models, however, is that they only model
the transmission delay of packets in a BLE subnet, and hence
cannot be used for communication spanning across multiple
networks. Furthermore, these models either only investigate
the effects of a single BLE connection parameter on commu-
nication latency [27, 36, 34] or do not apply to packets that
need to be received within given latency bounds [23, 29].

This paper, to the best of our knowledge, presents the first
model capturing the effect of all BLE communication param-
eters on the timeliness of traffic from and to a BLE node.
Dependable low-power wireless communication. A
plethora of low-power wireless research studies have investi-
gated how to sustain time-critical communication while min-
imizing power consumption in IEEE 802.15.4 [14, 17, 42]
and WirelessHART applications [7, 10, 24]. These works,
however, only focus on sustaining latency and reliability
within their low-power networks. Some low-power wireless
research have investigated dependable communication over
multiple networks, but neglect end-to-end timeliness [4, 6]
or explicitly exclude communication on the Internet [9].

In this work, instead, we investigate how low-power and
constraint nodes can sustain end-to-end dependability re-
quirements on traffic from and to a cloud server.
Estimating Internet characteristics. Capturing and miti-
gating loss and delays across the Internet has been exten-
sively studied over the last decades. The proposed mech-

11

PPublicationaper E - 18th International EWSN Conference

– 182 –



anisms to estimate end-to-end delay or loss, however, rely
on complex primitives, such as multiple Kalman filters [20],
machine learning [30] or two-level markov models [11].

In this paper, we present a simple and efficient approach
that accurately estimates the maximum network delay across
the Internet. We use the well-established RTT estimation of
TCP [18] as a base and revise it to be use on low-power,
asymmetric links, such as BLE connections.
Tactile Internet. Research works on the Tactile Internet
have investigated how to sustain minimal end-to-end latency
and maximum reliability on the Internet [12]. These works,
however, focus on optimizing 5G communication to reach
high data rates and round trip latencies below 1 ms [21, 33].

Contrary to these studies, our work focus on sustaining
given end-to-end dependability requirements while minimiz-
ing the power consumption of BLE devices.
9 Conclusion and Future Work

State-of-the-art BLE-based IoT applications are not able
to cope with delays or loss along the whole network path
between nodes and cloud. In this work, we show how BLE
nodes can estimate and mitigate network loss and delay by
dynamically adapting their BLE parameters. Using our ap-
proaches, nodes are able to sustain end-to-end latency and
reliability requirements while minimizing their power draw.

Our next steps include combining our adaptation ap-
proaches with sophisticated BLE channel management, such
as the work presented in [35], to improve the performance
of nodes sustaining end-to-end dependability requirements
even further. Furthermore, our adaptation approaches can
be used in combination with application-level improvements,
such as data reduction, compression, and prediction mecha-
nisms used in Tactile Internet applications [21].
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[48] J. Classen, M. Spörk, C. A. Boano, K. Römer, and M. Hollick. Analyzing Bluetooth Low
Energy Connections on Off-the-Shelf Devices. In Proceedings of the 17th International
Conference on Embedded Wireless Systems and Networks (EWSN), demo session. Junction
Publishing, Feb. 2020.

[49] M. Collotta et al. A Solution Based on Bluetooth Low Energy for Smart Home Energy
Management. Energies, 8, 2015.

[50] M. Collotta et al. Bluetooth 5: A concrete step forward toward the IoT. IEEE Communica-
tions Magazine, (7), 2018.

[51] Contiki-NG. Contiki-NG - Texas Instruments CC2650. https://github.com/
contiki-ng/contiki-ng/tree/master/arch/cpu/cc26x0-cc13x0,
2021. Accessed on 10/06/2021.

[52] Contiki-NG. Contiki-NG for nRF52 Development Kit. https://github.com/
contiki-ng/contiki-ng/wiki/Platform-nrf52dk, 2021. Accessed on
10/06/2021.

[53] S. M. Darroudi and C. Gomez. Bluetooth Low Energy Mesh networks: A survey. Sensors,
17(7):1467, 2017.

[54] S. M. Darroudi, C. Gomez, and J. Crowcroft. Bluetooth Low Energy Mesh Networks: A
Standards Perspective. IEEE Communications Magazine, 58(4):95–101, 2020.

[55] A. Dementyev, S. Hodges, S. Taylor, and J. Smith. Power Consumption Analysis of Blue-
tooth Low Energy, ZigBee and ANT Sensor Nodes in a Cyclic Sleep Scenario. In Proceed-
ings of the 1st IEEE International Wireless Symposium (IWS), 2013.

[56] D.-J. Deng, S.-Y. Lien, J. Lee, and K.-C. Chen. On quality-of-service provisioning in IEEE
802.11 ax WLANs. IEEE Access, 4:6086–6104, 2016.

[57] DetNet Working Group. Derministic Networking (detnet), 2020.

[58] B. Dezfouli et al. Real-time Communication in Low-Power Mobile Wireless Networks. In
Proc. of the 13th IEEE CCNC Conf., 2016.

[59] K. Diaz, D. Krupka, M. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. Schwartz, and K. David-
son. Fitbit: An Accurate and Reliable Device for Wireless Physical Activity Tracking.
International Journal of Cardiology, 185, 2015.

[60] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC: Re-architecting conges-
tion control for consistent high performance. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages 395–408, 2015.

[61] W. Dong, C. Chen, X. Liu, Y. He, Y. Liu, J. Bu, and X. Xu. Dynamic packet length control
in wireless sensor networks. IEEE Transactions on wireless communications, 13(3):1172–
1181, 2014.

[62] W. Dong, J. Yu, and P. Zhang. Exploiting error estimating codes for packet length adaptation
in low-power wireless networks. IEEE Transactions on Mobile Computing, 14(8):1601–

– 187 –

https://github.com/contiki-ng/contiki-ng/tree/master/arch/cpu/cc26x0-cc13x0
https://github.com/contiki-ng/contiki-ng/tree/master/arch/cpu/cc26x0-cc13x0
https://github.com/contiki-ng/contiki-ng/wiki/Platform-nrf52dk
https://github.com/contiki-ng/contiki-ng/wiki/Platform-nrf52dk


Enabling Time-Critical Internet of Things Applications Based on Bluetooth Low Energy

1614, 2014.

[63] P. Du et al. Adaptive time slotted channel hopping for wireless sensor networks. In Proc.
of the 4th CEEC Conf., 2012.

[64] A. Dunkels. uIP-A free small TCP/IP stack. Technical report, 2002.

[65] A. Dunkels. The ContikiMAC Radio Duty Cycling Protocol. Technical Report T2011:13,
Swedish Institute of Computer Science, 2011.

[66] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a Lightweight and Flexible Operating
System for Tiny Networked Sensors. In Proc. of the 1st EmNetS Workshop, 2004.

[67] S. Duquennoy, B. A. Nahas, O. Landsiedel, and T. Watteyne. Orchestra: Robust Mesh
Networks Through Autonomously Scheduled TSCH. In Proc. of the 13th ACM SenSys
Conference, 2015.

[68] M. H. Dwijaksara, W. S. Jeon, and D. G. Jeong. A Channel Access Scheme for Bluetooth
Low Energy to Support Delay-Sensitive Applications. In Proc. of the 27th Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016.

[69] M. Ellis et al. A two-level Markov model for packet loss in UDP/IP-based real-time video
applications targeting residential users. Computer Networks, 70, 2014.

[70] A. Elsts, X. Fafoutis, R. Piechocki, and I. Craddock. Adaptive channel selection in IEEE
802.15. 4 TSCH networks. In 2017 Global Internet of Things Summit (GIoTS), pages 1–6.
IEEE, 2017.

[71] Enterprise IoT Insights. Football trials real-time BLE-based
tracking and analytics ahead of new season. https://
enterpriseiotinsights.com/20200630/channels/news/
football-trials-real-time-ble-based-tracking-and-analytics,
2020. Accessed on 24/02/2021.

[72] R. Faragher and R. Harle. An analysis of the accuracy of bluetooth low energy for indoor
positioning applications. In Proceedings of the 27th International Technical Meeting of The
Satellite Division of the Institute of Navigation (ION GNSS+ 2014), pages 201–210, 2014.

[73] R. Faragher and R. Harle. Location Fingerprinting With Bluetooth Low Energy Beacons.
IEEE Journal on Selected Areas in Communications, 33(11):2418–2428, 2015.

[74] E. Fernández de Gorostiza, J. Berzosa, J. Mabe, and R. Cortiñas. A method for dynami-
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of Wireless Technologies on BLE Based WBANs in Hospitals. In Proc. of the Symposium
on Personal, Indoor, and Mobile Radio Communications, 2017.
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[184] M. Schuß, C. Boano, M. Weber, and K. Römer. A Competition to Push the Dependability of
Low-Power Wireless Protocols to the Edge. In Proc. of the 14th EWSN Conference, 2017.

[185] M. Schuß, C. A. Boano, M. Weber, M. Schulz, M. Hollick, and K. Römer. JamLab-NG:
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